ﬂ(l I THE UNIVERSITY OF

Karlsruhe Institute of Technology TENNES SEE

KNOXVILLE

Algorithm Design in the Advent of Exascale Computing

4th International Symposium on Research and Education of Computational Science (RECS)
University of Tokyo, October 279, 2019

Hartwig Anzt, Terry Cojean, Goran Flegar, Thomas Griitzmacher, Pratik Nayak, Tobias Ribizel

Steinbuch Centre for Computing (SCC)

o

A
ai

Terry Cojean Thomas Pratik Nayak Tobias Ribizel Mike Ts
Griutzmacher

KIT — The Research University in the Helmholtz Association

Where do we stand?

OAK RIDGE |5t Aff s
National Laboratory | FACILITY =] 1) rr, rr,' t
. Node: 2 IBM POWERS + 6 NVIDIA V100 GPUs
. 4,608 nodes, 9,216 IBM Power9 CPUs

. 27,648 V100 GPUs

. Peak performance of 200 Pflop/s for modeling
& simulation

. Peak performance of 3.3 Eflop/s
for 16 bit floating point used in data
analytics and artificial intelligence

Copyright@ORNL

2 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Where do we stand?

OAK RIDGE E%ADERSHI(;D /\A‘\
%National Laboratory FACNITHTYIN Sl rr, rr' I t
. Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs

. 4,608 nodes, 9,216 IBM Power9 CPUs

. 27,648 V100 GPUs

. Peak performance of 200 Pflop/s for modeling
& simulation

. Peak performance of 3.3 Eflop/s
for 16 bit floating point used in data
analytics and artificial intelligence

Copyright@ORNL

3 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Machine balance (# flops per read)

100f

10

Peak Mflops / MWps

B "
, : [Nvidia K40

sl - (Nyidia M2050j TICOre .

=i

Tie e

Nvidia C1060,

64bit read,

/ -

1 DP-FLOP 1975

1980 1985 1990 1995 2000 2005 2010 2015
year

John D. McCalpin (TACC)

1. Compute power (#FLOPs) grows much faster than bandwidth.

“Operations are free, mem access and comm is what counts.”

10/02/2019

Where do we stand?

OAK RIDGE E%ADERSHI(;D /\A‘\
%National Laboratory FACNITHTYIN Sl rr, rr' I t
. Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs

. 4,608 nodes, 9,216 IBM Power9 CPUs

. 27,648 V100 GPUs

. Peak performance of 200 Pflop/s for modeling
& simulation

. Peak performance of 3.3 Eflop/s
for 16 bit floating point used in data
analytics and artificial intelligence

Copyright@ORNL

4 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Machine balance (# flops per read)

100f

10

Peak Mflops / MWps

. L *. [Xeon Phil
it om0 o (Nvidia Ko
. - (Nvidia M2050je “(Core 17

=

Tie e

Nvidia C1060,

64bit read,

/ -

1 DP-FLOP 1975

1980

1985 1990 1995 2000 2005 2010 2015
year

John D. McCalpin (TACC)

1. Compute power (#FLOPs) grows much faster than bandwidth.

“Operations are free, mem access and comm is what counts.”

2. Manycore architectures need new algorithmic approaches.

“Sync-Free fine-grained parallelism needed.”

10/02/2019

Where do we stand?

OAK RIDGE | st i s,
%National Laboratory | FACILITY Sl rr' rr, I t
. Node: 2 IBM POWERS + 6 NVIDIA V100 GPUs

. 4,608 nodes, 9,216 IBM Power9 CPUs

. 27,648 V100 GPUs

. Peak performance of 200 Pflop/s for modeling
& simulation

. Peak performance of 3.3 Eflop/s
for 16 bit floating point used in data
analytics and artificial intelligence

Copyright@ORNL

5 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Machine balance (# flops per read)

100f

. I i *. [Xeon Phil
ige % .+ [Nvidia K40
- .-~ (Nvidia M2050p S(Core17

=

e ‘ JCore2Dud) »
Lo e e
.+ [Nvidia C1060

10

Peak Mflops / MWps

64bit read, / >

1DP-FLOP 1975 1980 1985 1990 1995 2000 2005 2010 2015
year

John D. McCalpi
Compute power (#FLOPs) grows much faster than bandwidth. \

“Operations are free, mem access and comm is what counts.”

Manycore architectures need new algorithmic approaches.

“Sync-Free fine-grained parallelism needed.”

Software lives longer than hardware.

“We need a paradigm change to embrace software deve/opmely

10/02/2019

Machine balance (# flops per read)

Where do we stand?
100} _
AK IDGE LEADERSHIP R .ot _Nvi(-ji.a K40
COMPUTING » . . - {Nvidia M2050p “(Core 7]
National Laboratory | FACILITY su rr' rr, 1 t = e ";":‘-."NCo(iezr';zgs'o' ‘
= L e e e e
~ 10+ Bty ""'I'. .'-.:' CHL I
* Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs 8 B
. 4,608 nodes, 9,216 IBM Power9 CPUs ;2:
« 27,648 V100 GPUs 9
. Peak performance of 200 Pflop/s for modeling T
& simulation e ,
. Peak performance of 3.3 Eflop/s 64bit read, . ~ . .
: : : : 1DP-FLOP 1975 1980 1985 1990 1995 2000 2005 2010 2015
for 16 bit floating point used in data year
analytics and artificial intelligence - John D McCalbi
©
— = e —amm e 7 i]Y@\‘@gmpute power (#FLOPs) grows much faster than bandwidth. \
= T g | |1 . W C
— X s . oV “Operations are free, mem access and comm is what counts.”

%’6‘\ %e
S . . .
%x\a\ma nycore architectures need new algorithmic approaches.

(\\\(,o(e “Sync-Free fine-grained parallelism needed.”

N\
e
‘(%,6\\6§%ftware lives longer than hardware.
C
Copyright@ORNL o Q@(’\ “We need a paradigm change to embrace software deve/opmely
50

6 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Communication Bottleneck

OAK RIDGE |5t Aff s
National Laboratory | FACILITY =] 1) rr, rr,' t
. Node: 2 IBM POWERS + 6 NVIDIA V100 GPUs
. 4,608 nodes, 9,216 IBM Power9 CPUs

. 27,648 V100 GPUs

. Peak performance of 200 Pflop/s for modeling
& simulation

. Peak performance of 3.3 Eflop/s
for 16 bit floating point used in data
analytics and artificial intelligence

Copyright@ORNL

7 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Communication Bottleneck

%, OAK RIDGE |ttt AN Roofline Model

National Laboratory | FACILITY 5”"-'"-,".' Given certain hardware characteristics:
memory bandwidth, Acceleration
* Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs arithmetic power, Top Speed
. 4,608 nodes, 9,216 IBM Power9 CPUs
. 27,648 V100 GPUs the performance of any operation is

* either bound by the data access/communication (memory bound),

. Peak performance of 200 Pflop/s for modeling
* or by the arithmetic operations (compute bound).

& simulation

. Peak performance of 3.3 Eflop/s N
for 16 bit floating point used in data
analytics and artificial intelligence

Speed

Runway

Copyright@ORNL

8 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Communication Bottleneck

OAK RIDGE | st i s,
%National Laboratory | FACILITY Sl rr, rr' I t
. Node: 2 IBM POWERS + 6 NVIDIA V100 GPUs

. 4,608 nodes, 9,216 IBM Power9 CPUs

. 27,648 V100 GPUs

. Peak performance of 200 Pflop/s for modeling
& simulation

. Peak performance of 3.3 Eflop/s
for 16 bit floating point used in data
analytics and artificial intelligence

Copyright@ORNL

9 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Roofline Model

Given certain hardware characteristics:
memory bandwidth, Acceleration
arithmetic power, Top Speed

the performance of any operation is
* either bound by the data access/communication (memory bound),
* or by the arithmetic operations (compute bound).

Matrix-Matrix Product (GEMM): C = A x B A B,C e R™*"

3n? Memory operations
2n3 Arithmetic operations

We just need to increase the size, and at some point
the operation becomes compute bound.

“we infinitely extend the acceleration runway”

10/02/2019

The Communication Bottleneck

OAK RIDGE |LEADERsHIP /A'\ Dense Matrix Operations?
] COMPUTING IS] | ":
National Laboratory | FACILITY
. Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs * Eachnode has more computational power than what we canleverage;
. 4,608 nodes, 9,216 IBM Power9 CPUs matrix multiply (gemm) roofline model
100 for one node in 4x4 node computation
. 27,648 V100 GPUs - ‘
. Peak performance of 200 Pflop/s for modeling | GPUsingle peak 42.4 Tflop/s e e,
& simulation GPUdoublepeak 212 Tflop/s "
. Peak performance of 3.3 Eflop/s
. . . . 10 4 I
for 16 bit floating point used in data] xq,o%» "7 coemm GRY
. e . 1 . < D — sgemm
analytics and artificial intelligence ‘ & -—- zgemm GPU
» ,o(\é i —— dgemm GPU
g QO
2 W
. CPU single peak 1.1 Tflop/s -~ cgemm CPU
1. gerp . P —— sgemm CPU
] —== zgemm CPU
] —— dgemm CPU
0.1 A
6I4 158 25156 5i2 10124 20148 40196 81I92 16é84 32%68
arithmetic intensity: flop/byte Mark Gates (UTK)

Copyright@ORNL

10 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Communication Bottleneck

LEADERSHIP /A\ i ions?
OAK RIDGE conpoTne KPR T Dense Matrix Operations
National Laboratory | FACILITY rr, rr'
. Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs * Eachnode has more computational power than what we canleverage;
. 4,608 nodes, 9,216 IBM Power9 CPUs matrix multiply (gemm) roofline model
for one node in 4x4 node computation
e 27,648 V100 GPUs 1003 ~
. Peak performance of 200 Pflop/s for modeling G single peak 224 Top/s
& simulation
. Peak performance of 3.3 Eflop/s
for 16 bit floating point used in data o T caemm Gh
analytics and artificial intelligence --- zgemm GPU
2 —— dgemm GPU
é --=- cgemm CPU
14 —— sgemm CPU
] —== zgemm CPU
] —— dgemm CPU
0.1'-
6I4 158 25156 5i2 10124 20148 40196 81I92 16é84 32%68
arithmetic intensity: flop/byte Mark Gates (UTK)

Copyright@ORNL

11 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Communication Bottleneck

OAK RIDGE TST T /A'\ Dense Matrix Operations?
National Laboratory | FACILITY] urr' rr, I t
. Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs * Eachnode has more computational power than what we canleverage;
. 4,608 nodes, 9,216 IBM Power9 CPUs
* 27,6483 V100 GPUs Sparse / Graph Problems?
. Peak performance of 200 Pflop/s for modeling

) , * Sparse Matrix Vector Product (SpMV) is a central building block;
& simulation

. Peak performance of 3.3 Eflop/s
for 16 bit floating point used in data
analytics and artificial intelligence

X X X X X X X
xX X X X
X X X X
X X X X X X
X X X X X X
X X X X X X X
X X X X
X X X X
X X X X X

Copyright@ORNL

12 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Communication Bottleneck

OAK RIDGE LEADERSHIP /A'\ Dense Matrix Operations?

_ COMPUTING
National Laboratory | FACILITY

. Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs * Eachnode has more computational power than what we canleverage;
. 4,608 nodes, 9,216 IBM Power9 CPUs
. 27,648 V100 GPUs Sparse / Graph Problems?

. Peak performance of 200 Pflop/s for modeling

) , * Sparse Matrix Vector Product (SpMV) is a central building block;
& simulation

. Peak performance of 3.3 Eflop/s '

for 16 bit floating point used in data

analytics and artificial intelligence
* The inter-node communicationis an order of magnitude slower

than the local computations.

X X X X X X X
xX X X X
X X X X
X X X X X X
X X X X X X
X X X X X X X
X X X X
X X X X
X X X X X

1SuiteSparse Matrix Collection: https://sparse.tamu.edu/

Copyright@ORNL

13 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

%

-

14

e
= =

54 8

The Communication Bottleneck

LEADERSHIP /\A\ i ions?
OAK RIDGE covpuTiNG EZP] 1t Dense Matrix Operations
National Laboratory | FACILITY rr' rr,

Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs * Eachnode has rp putational power than what we can leverage;
4,608 nodes, 9,216 IBM Power9 CPUs
27,648 V100 GPUs Sparse / Gr

Peak performance of 200 Pflop/s for modeling
& simulation
Peak performance of 3.3 Eflop/s y of the problems in the SuiteSparse Matrix Collection?,

for 16 bit floating point used in data ulti-node SpMV is slower than a Single-node SpMV;
analytics and artificial intelligence

——t: X X X X X X X
X X X X
X X X X

X X X X X X
X X X X X X
X X X X X X X
X X X X

X X X X
X X X X X

1SuiteSparse Matrix Collection: https://sparse.tamu.edu/

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Communication Bottleneck

> N

g Radically decouple storage format from arithmetic format.
Processing Units
. e The arithmetic operations should use
. high precision formats natively supported by hardware.
* should be as cheap as possible, IEEE 754 DP
IEEE + Value Clustering
i * Custom Formats
« Consider a wide range of memory formats: + Lossy/Lossless Data Accessor @ij
* Unum, Posits ...
e |EEE standard precision formats
Data Compression
* Customized formats (configuring mantissa/exponent)

* Lossy compression

g 4

Copyright@ORNL 1SuiteSparse Matrix Collection: https://sparse.tamu.edu/

15 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Spotlight Example: Use reduced precision for “approximate Operators”

* Solve sparse linear systemAx =b
* Preconditioners for iterative solvers.

* Idea: Approximate inverse of system matrix to make the system “easier to solve”: Pl Al

~

A=PpP 14, B: P~ b andwe solve Az = be Ax =b.

16 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Spotlight Example: Use reduced precision for “approximate Operators”

* Solve sparse linear systemAZIZ =b
* Preconditioners for iterative solvers.

* Idea: Approximate inverse of system matrix to make the system “easier to solve”: Pl Al

~

A=P 1A, b= P 1p,andwesolve Az =b< Ax =b.
* Why should we store the preconditioner matrixP_1 in full (high) precision?

* We have to ensure regularity! (Reducing precision can turn matrix singular)

17 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

18

Spotlight Example: Use reduced precision for “approximate Operators”

Solve sparse linear systemAZE =b

Preconditioners for iterative solvers.

* Idea: Approximate inverse of system matrix to make the system “easier to solve”: Pl Al

~

A=PpP 14, E: P~ b andwe solve Az = be Ax =b.

Why should we store the preconditioner matrixP_1 in full (high) precision?

* We have to ensure regularity! (Reducing precision can turn matrix singular)

- Jacobi method based on diagonal scaling P = diag(A)
is based on : P = diagg(A)

* Large set of small diagonal blocks.

* Eachblock corresponds to one (small) linear system.
blocks typically improve convergence.
blocks make block-Jacobi more expensive.

Extreme case: one block of matrix size.

https://science.nasa.gov/earth-science/focus-areas/earth-weather

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

19

Spotlight Example: Block-Jacobi Preconditioning

Preconditioner Setup:

» Identify the diagonal blocks P = diagp(A) BN
* Form the block-lnverse P~ 1 ~ A~1 ' .::‘:.1@ ‘E'.;
ooo. oo.o.
LX) ®,

R > AR AR >
e, oflle . ®

Q000 OOO0
Preconditioner Application:
e Apply the preconditioner in every solver iteration via:
y:=P 1z

We can store diagonal blocks in lower precision, if regularity is preserved! '

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

®

Extract diagonal block from
sparse data structure.

@ Invert diagonal block.

R
o, o, ()

()
> SRR
OO0 O

v oa® v ® . 89

a2 LX) 2
9, O

OO0 OO

@

Insert inverse as diagonal block
into preconditioner matrix.

10/02/2019

20

Adaptive Precision Block-Jacobi Preconditioning

* 70 matrices from the SuiteSparse Matrix Collection

Q Value Range + Median

* Use block-size 24 with Super-Variable agglomeration (24 is upper bound for size of blocks) + Outlier
* Report conditioning of all arising diagonal blocks
TT I T T T T T I T T I T T I T T T T T T I T T I T T T T T TTIT]
o ¥
5
2 10 | + B
o 10 L T -+
c F |+ 1 T &
S + ¥ +
g T F __||: + 1 +
S 10° [~ T i T T + 7
S5 - toks + + 4 L F L
S +7_F I + +R$ =T L4l | T + ¥ + .
10o|||||||||||T||||||||||||||||||+T|||T|$+|T||$||||||||J_.|||||T|T|T¢4T:|T|||
10 20 30 40 50 60 70
Test matrices
Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Adaptive Precision Block-Jacobi Preconditioning

Q Value Range + Median
* 70 matrices from the SuiteSparse Matrix Collection

* Use block-size 24 with Super-Variable agglomeration (24 is upper bound for size of blocks) + Outlier
* Report conditioning of all arising diagonal blocks
* Analyze the impact of storing block-Jacobi in lower precision a top-level Conjugate Gradient solver (CG)
TT I T T T T T I T T I T T I T T T T T T I T T I T T T T T TTIT]
o T
5
2 10 | T .
= 10 T + _+
c F |+ 1 T &
8 . ¥ +
g I ¥ + + iR +
> 10° F - + + o+ L |
O F L
© v, + + + * + o+ il
S +7_F 1 1 +R$ - INRNARE: + T * 4
= + L=+ T + - - +
m + +_ +_ 1
10o|||||||||||T||||||||||||||||||+T|||T|++|T||$||||||||+|||||||T|T¢4T:|||||
10 20 30 40 50 60 70
Test matrices
21 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Adaptive Precision Block-Jacobi Preconditioning

LV

X
X

10% ¢ | | | ¥ ¥ | E
n x J * double prec. block-Jacobi |
B 5]
i % o X 1
B X X _
X X
» 10% * X x . » =
s = x x X x]
-§ B X . X i
O] % |
= T x xx X x X * % % &
Q) 5 X X X X x X
010 E X X —
- X x X x % X X]
u " X X *]
i * " 1
X x xxx v % Xxx
i | | | | | | |
rrrrrrrrrrrrrr1rrrr1rr+rr1rr1r++rr+++r1r+1rr1r 1+t +1+ 11111111011 rrrrrrrrrrrrrrr T
2 i
S
= 1010_ T T —
© T+ -+
S T T F*
(&) * + +
o +
: ¥ anE:
> 5 1 - ++ + +]
© - q ++ F = + o + + o+ 1
X + 1 + - + ¥
&) 2 ¥ 1 R$ 1 + + + i +
100IIIIIIIIIIITIIIIIIIIIIIIIIIIII_!_TIIITI$+ITII#IIIIIIII.!.IIIIITITIT;JT:ITIII
10 20 30 40 50 60 70

Test matrices

22 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

23

Block diagonal conditioning

Adaptive Precision Block-Jacobi Preconditioning

25+ \ \ \ \ ‘ ks
i % double prec. block-dacobi ||
i single prec. block-dacobi |
- i]
© 2 —
D L i
< B i
o
o L i
o B i
G151 -
IS L i
2 = i
o L _
O - —
\ \ \ \ \ \ \
rrrrrrrrrrrrrrrrrnrr+r+rr+rnr+r+t++r >+ 11+ 1+ 1111t rrrrrrrrrrrrrrrrrrrrrrrrrr Tt T T
100 T ¥ I
¥ t+ - T
¥ +
+ ¥
+

105 F il ol |4+t T "'* + o+ !]

4 T o= & + * + + + i

U 4 i = + - + =
+ 7 _ 1 H 1 + + T
+ + ¥ L +
+ + =+ T4 Tllil++7 +
100IIIIIIIIIIITIIIIIIIIIIIIIIIIII_!_TIIITI$+ITII#IIIIIIII.!.IIIIITITIT;:IT:ITIII
10 20 30 40 50 60 70
Test matrices
Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Adaptive Precision Block-Jacobi Preconditioning

10% | | | | | B
B A % double prec. block-Jacobi |-
i A single prec. block-Jacobi |
o i A half prec. block-Jacobi
2
L [AA —
% A
10" - A E
5 5 :
© i]
s A A AL A]
O) i A A faY i
© 7 A N A A |
moéAAAH“AAAAAAAVVA“AAH“AéuﬂuéuA“AA“HAAAAAAzéAAAAAAAAxAxxAAéHAAAAAAA“AAAA
E | | | | | | E
I e I I O Y O
2 i
5
% 10 10 | T T ; —
c F + 1 T &
3 . F +
e +
c = + + + T
> 51 LT - ++ T + + + |
> 10 I T z TIT1
© - q ++ F = + o + + o+ 1
X + 1 + - n T _
8 + i T R $ — + T + i +
10o|||||||||||T||||||||||||||||||+T|||T|$+|T||$||||||||+|||||T|T|'|'¢4T:|T|||
10 20 30 40 50 60 70

Test matrices

24 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Adaptive Precision Block-Jacobi Preconditioning

ﬂ/lulti-Precision Idea: > 106 \

_—> Store block in double precision

* All computations use double precision!

* Store distinct blocks in different formats Estimate conditioning 5 S block in sinel . .
* Use single precision as standard storage format of diagonal block toreblockin single precision

* Where necessary: switch to double
e F ll-conditioned block half isi
or well-conditioned blocks use half precision Q Store block in half precision

\ <10! /

2 \ \
% double prec. block-Jacobi
single prec. block-Jacobi
1.5 O adaptive precision block-Jacobi

Anzt, Dongarra, Flegar, Higham, Quintana-Orti. ” Adaptive Precision in Block-Jacobi Preconditioning for Iterative Sparse Linear System Solvers”. CCPE, 2019.

Energy estimate
\O*\\\\H\H‘\HHHH
1 \\O*\\\\\\\H‘\HHHM

XAXXAHAXXAXXXAXXXAXXXAXXXAXAXXAXXXAXXXAXXXXAXXAXAXXXXXAXAXXAXXXXXXXXXAXAXXAAXXAAXXAXXXXXX XX
%000 o ©O0 o 9.0 ©
0%°599_v%00 6n 0 O 0000 0000 %90 0g © o
o o} S, 000 0oV qv0OVO © o0
oo o O (o] 0o
0.5 | | | | | | |
10 20 30 40 50 60 70

Test matrices

25 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Adaptive Precision Block-Jacobi Preconditioning

ﬁ/lulti-Precision Idea:

Invert the diagonal block \
* All computations use double precision! using Gauss-Jordan elimination.

Select storage format:
e Depart from therigid IEEE precision formats!

16-bit fps o=+ fpg; ==b p114

Compute condition number [\ Il {
* Preserve either 1 or 2 digits accuracy of the and exponent range. " | 32-bit fpg 23 = fp1120
inverted diagonal blocks. AV |

\ 64-bit fp1ss2 /

Flegar, Anzt, Quintana-Orti. "Customized-Precision Block-Jacobi Preconditioning for Krylov Iterative Solvers on Data-Parallel Manycore Processors”. TOMS, submitted.

26 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Adaptive Precision Block-Jacobi Preconditioning

ﬁ/lulti-Precision Idea: \
Invert the diagonal block

* All computations use double precision! using Gauss-Jordan elimination.

Select storage format:

. :
Depart from the rigid IEEE precision formats! 16-bit fps 10— Pay = P11

Compute condition number ’ | \ } {
* Preserve either 1 or 2 digits accuracy of the and exponent range. " | 32-bit fPg2s = fp1120
inverted diagonal blocks. AV |

\ 64-bit fpn,sz /

v" Regularity preserved;

Overhead of the precision detection

v" No flexible Krylov solver needed (condition number calculation);

(Preconditioner constant operator);

Overhead from storing precision information

v" Can handle non-spd problems (need to additionally store/retrieve flag);

(inversion features pivoting);

Speedups / preconditioner quality problem-dependent;

v Preconditioner for any iterative preconditionable solver;

27 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

NVIDIAV100 GPU

I (terations (adaptive) [Jlij Time (adaptive) [Jlj CG converged? [CG + Jacobi converged? [] CG + adaptive Jacobi converged?

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

achp

i

LN
o ~
stmwam S
olel Iqode(aAndepe Jiqoder

10/02/2019

Problem

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

28

NVIDIAV100 GPU

I (terations (adaptive) [Jlij Time (adaptive) [Jlj CG converged? [CG + Jacobi converged? [] CG + adaptive Jacobi converged?

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

achp

2e2

dn

onelJ 1gooe

O
%!

P

-

2ad

Alldepe

MQ odel

O:5

10/02/2019

Problem

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

29

NVIDIAV100 GPU

I (terations (adaptive) [Jlij Time (adaptive) [Jlj CG converged? [CG + Jacobi converged? [] CG + adaptive Jacobi converged?

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

achp

2e2)

[J
e8 80 co0000e0e00
&

......
o
[]
@€
NS

o
o
® © 6 060 0 09 00
<
N
OSZ'

°®
®
0008 0008 08 cee0c0e0c0ceo0o0e0eoeooe
N

o
L]
N

°

o8 o
S
<

eioo':.‘ooogoooilooooo

G:5
0:25

-
stmwam
olel Iqode(aAndepe Jiqoder

10/02/2019

Problem

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

30

NVIDIAV100 GPU

I (terations (adaptive) [Jlij Time (adaptive) [Jlj CG converged? [CG + Jacobi converged? [] CG + adaptive Jacobi converged?

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

achp

2e2)

')
®
o0
[)
o o
[)
o0
o o
°o 0
o o
o0
‘e
)
° °
o 0
)
° °
. -
° ° 2
e o (T)
o0 o]
o o ~
¢ c
(X] (q°]
o o ¢m
o o mw
o o (0]
o o 5
o o o
—t O
o o -
It Iz
o o o]0)
° <
° ° wn
° ° mm
(] (o
. 2
I) (e
o =
® ©
—4 =
° O
° o
° o
) mw
rs)
L
(]
e
=
wn
£
(]
o)
o
[a
°
o o
o o
o o
o o
e
)
°
°
° °
)
e o
)
°
®
®
o0
o
o o
-
Q

-
stmwam
olel Iqode(aAndepe Jiqoder

G5

10/02/2019

Problem

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

31

NVIDIAV100 GPU

I (terations (adaptive) [Jlij Time (adaptive) [Jlj CG converged? [CG + Jacobi converged? [] CG + adaptive Jacobi converged?

000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000
000

Roughly 20% faster.

Ginkgo

N
l\@’\‘
$

Flegar, Anzt, Cojean, Quintana-Orti. ”Customized-Precision Block-Jacobi Preconditioning for

Krylov Iterative Solvers on Data-Parallel Manycore Processors”. TOMS, submitted.
Artifact Evaluation: https.//qithub.com/qinkgo-project/qinkgo-data/tree/2019toms-adaptive-bj

Production-ready code: https://qinkqo-project.qithub.io/
élz

elOo‘:.‘ooosooo..ooooo

2e2)
G5
025

-
stmwam
olel Iqode(aAndepe Jiqoder

10/02/2019

Problem

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

32

The Communication Bottleneck

> N

g Radically decouple storage format from arithmetic format.
Processing Units
. e The arithmetic operations should use
. high precision formats natively supported by hardware.
* should be as cheap as possible, IEEE 754 DP
IEEE + Value Clustering
i * Custom Formats
« Consider a wide range of memory formats: + Lossy/Lossless Data Accessor @ij
* Unum, Posits ...
e |EEE standard precision formats
Data Compression
* Customized formats (configuring mantissa/exponent)

* Lossy compression

g 4

Copyright@ORNL 1SuiteSparse Matrix Collection: https://sparse.tamu.edu/

33 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

How to deal with the Manycore Parallelism?

Increasing adoption of manycore accelerators
-- partly motivated by the Machine Learning excitement;
Integration of low-precision tensor units;

The GPU streaming model is dominating;

Algorithms need fine-grained parallelism

-- thousands of SIMT threads!
Global synchronizations are killing performance;
Runtime scheduling of thread blocks virtually impossible;
Memory access pattern central (coalesced data access);

Asynchronous algorithms needed;

Reformulation as fixed-point iteration;

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Accelerator share in the TOP50 systems [Jun 2019]

Nvidia Kepler, 1 Nvidia Pascal, 3

—_—

-

Nvidia
Volta, 9

Matrix-2000, 1

None, 23

Xeon Phi Deep Computing
Main, 8 P.,1
ShenWei, 1
PowerBQC, 3
ONvidia Kepler ONvidia Pascal Nvidia Volta
BOMatrix-2000 Deep Computing P.@Xeon Phi Main

OShenWei OPowerBQC ONone

Jack Dongarra (UTK)

10/02/2019

Spotlight Example: Incomplete Sparse Factorizations

We are looking for a factorization-based preconditioner such that A ~ L - U. i i i . o
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)). X X X x
X X X X X X
X X X X X
X X X X X X
X X X
X X X X
X X X X

35 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Spotlight Example: Incomplete Sparse Factorizations

We are looking for a factorization-based preconditioner such that A ~ L - U. i >X< >X< x o
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)). X X X X
X X X X X X
X X X X X
* Where should these nonzero elements be located? x X X X X X
X X X
* How can we compute the preconditioner in a highly parallel fashion? X X X X
X X X X

36 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Spotlight Example: Incomplete Sparse Factorizations

We are looking for a factorization-based preconditioner suchthat A ~ L - U. i : : * .
is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A)). X X X %
X X X X X X
X X X X X
* Where should these nonzero elements be located? x X X X X X
X X X
* How can we compute the preconditioner in a highly parallel fashion? X X X X
X X X X
Exact LU Factorization S(A) ={(i,j) € N*: A;; # 0}

. Decompose system matrix into product A = L - U.
. Based on Gaussian elimination.
. Triangular solves to solve a system Ax = b:

Ly=b=y = Ur=y==x

. De-Facto standard for solving dense problems.
. What about sparse? Often significant fill-in...

37 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Spotlight Example: Incomplete Sparse Factorizations

We are looking for a factorization-based preconditioner suchthat A ~ L - U. i i i * .
is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A)). X X X x
X X X X X X
X X X X X
* Where should these nonzero elements be located? x X X X X X
X X X
* How can we compute the preconditioner in a highly parallel fashion? X X X X
X X X X
Exact LU Factorization Incomplete LU Factorization (ILU)
. Decompose system matrix into product A = L - U. * Focused on restricting fill-into a
. Based on Gaussian elimination. specific sparsity patternS.

. Triangular solves to solve a system Ax = b:
Ly=b=y = Ur=y==x

. De-Facto standard for solving dense problems.
. What about sparse? Often significant fill-in...

38 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Spotlight Example: Incomplete Sparse Factorizations

We are looking for a factorization-based preconditioner suchthat A ~ L - U. i i i * .
is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A)). X X X %
X X X X X X
X X X X X
* Where should these nonzero elements be located? x X X X X X
X X X
* How can we compute the preconditioner in a highly parallel fashion? X X X X
X X X X
Exact LU Factorization Incomplete LU Factorization (ILU)
. Decompose system matrix into product A = L - U. * Focused on restricting fill-into a
. Based on Gaussian elimination. specific sparsity patternS.
. Triangular solves to solve a system Ax = b:
Ly=b=y s Uz =y =z * For ILU(0),S is the sparsity pattern of A.

* Works well for many problems.
. De-Facto standard for solving dense problems.
. What about sparse? Often significant fill-in...

39 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Spotlight Example: Incomplete Sparse Factorizations

We are looking for a factorization-based preconditioner suchthat A ~ L - U. i i i * .
is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A)). X X X %
X X X X X X
X X X X X
* Where should these nonzero elements be located? x X X X X X
X X X
* How can we compute the preconditioner in a highly parallel fashion? X X X X
X X X X
Exact LU Factorization Incomplete LU Factorization (ILU)
. Decompose system matrix into product A = L - U. * Focused on restricting fill-into a
. Based on Gaussian elimination. specific sparsity patternS.
. Triangular solves to solve a system Ax = b:
Ly=b=y s Uz =y =z * For ILU(0),S is the sparsity pattern of A.

* Works well for many problems.
. De-Facto standard for solving dense problems.
. What about sparse? Often significant fill-in...

* Fill-ininthreshold ILU (ILUT) bases S on the
significance of elements (e.g. magnitude).
* Often better preconditioners than
level-based ILU.
* Difficult to parallelize.

40 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Spotlight Example: Incomplete Sparse Factorizations

41

We are looking for a factorization-based preconditioner such that A ~ L - U.
is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A)).

X X X X

* Where should these nonzero elements be located?

X

* How can we compute the preconditioner in a highly parallel fashion?

Rethink the overallstrategy!

* Use a parallel iterative process to generate factors.

e The preconditioner should have a moderate number of nonzero elements,
but we don’t care too much about intermediate data.

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

X

X X X X

X

X X X X

X X X X X

10/02/2019

Spotlight Example: Incomplete Sparse Factorizations

We are looking for a factorization-based preconditioner suchthat A =~ L - U. SRR S
is a good approximation with moderate nonzero count (e.g.nnz(L + U) = nnz(A)). X X X x
X X X X X X
X X X X X
* Where should these nonzero elements be located? X X X X X X
X X X
* How can we compute the preconditioner in a highly parallel fashion? X X X X

Rethink the overallstrategy!

* Use a parallel iterative process to generate factors.

e The preconditioner should have a moderate number of nonzero elements,

4)

Select a set of nonzero locations.
Compute values in those locations such that A ~ L - U is a “good” approximation.

Maybe change some locations in favor of locations that result in a better preconditioner.

A L N R

Repeat until the preconditioner quality does no longer improve for the nonzero count.

\. /

42 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* This isan optimization problem...

ILU residual R = A - L X U
* *x * % * * * *x K % *
* k% * X * % * % * X
* k% * Xk % *
* * I * x *
* * x * * * %
* % * X * % * % *

43 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* This isan optimization problem...

ILU residual R = A - L X 4
* ok x * * * T *
ST * % [[~ = * ok S—
* Kk x * * x *
* * I * x *
* N * * * ok
* ok * ok * K * K *
* ok x * * -
N ** *
* kK
* *
* * ok
* ok * ok

44 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* This isan optimization problem...

ILU residual R = A - L X 4
* ok Kk K * * * x ok |x *
* Kk x * x * * S
* K ok [+~ ~ = | *
* * * * *
* * x * * * ok
* x * x * * *
* ok Kk x * -
* ok kA Kk K
* x *
* *
* * ok
* K * ok

45 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* This isan optimization problem...

ILU residual R = A - L X U
* *x * % * * * *x K % *
* k% * X * % * % * X
* k% * Xk % *
* * I * x *
* * x * * * %
* % * X * % * % *
* *x Kk % *
*x X Xk Kk Kk *
* X Kk Kk Kk &
* Kk Kk % *
* % * %
*x X kX Kk Kk *

46 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* This isan optimization problem...

ILU residual R = A - L X U
* *x * % * * * *x K % *
* k% * X * % * % * X
* k% * Xk % % *
* * * * *
ILU residual * * x * * * ok
matrix pattern * o *ox x o x o *
* kX Kk k * * Kk Kk % * * *x Kk % *
* * * * * * * * * * * * * * * * *
* X Kk Kk X * o * Kk % * X Kk Kk Kk &
*x * X % * * * * Kk Kk % *
* % * % * * % * % * %
* * * * * * * * * * * * * * * *

47 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* x ok * * * * x Kk * *
* x K * NE— NE— N
* x ok * x x *
* * I * x *
* * * * N
* * * * * NE— *
* K kK * * x Kk * * * x x Kk * *
* Kk Kk Kk K * * K % * * * % * % * % SparsitypatternS
* x Kk Kk K * ol x o+ % * x * *
X x k * * N * | * * x *
* * N * * * * Nu—
* x Kk Kk x * * *x NE— N * * *

48 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!
nnz(L + U)equations
nnz(L + U) variables

S * * Kk Kk ok * * * Kk Kk ok *
* Kk Kk Kk K X * K x * * * % * % * % Sparsity pattern S
* Kk Kk K* K * IR * Kk % *
* KX ok K * I * e * x *
S S * S * * S
* ok K K* Kk x * % S * ok * ok *

49 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

* This isthe underlying idea of Edmond Chow’s parallel ILU algorithm?:

1—1

L-U=Als = F(lij,uij) = {ujj (a” k=1 tikUkj | ; Z]
Qij = D p=1 likUkj, i<

1Chow and Patel. “Fine-grained Parallel Incomplete LU Factorization”. /n:SIAM J. on Sci. Comp. (2015).

50 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

f 1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

* This isthe underlying idea of Edmond Chow’s parallel ILU algorithm?:
1 j—1 S
oo\ Qi — ik) , 7>
L-U = A|S = F(lija uij) — {ujj (J k=1 Ytk Wkj]

i—1 o
@ij — D p—q likUkj, 1<)

Converges in the asymptotic sense towards incomplete factors L, U
suchthat R=A—-L-U =0|s

1Chow and Patel. “Fine-grained Parallel Incomplete LU Factorization”. /n:SIAM J. on Sci. Comp. (2015).

51 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

52

[1. Selecta setof nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates.)

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

* This isthe underlying idea of Edmond Chow’s parallel ILU algorithm?:

2 (asy = S oy
L-U=Als = Flij,u;)= {ujj <a”. 2 k=1 livties)

@ij — D p—q likUkj,

* Convergesin the asymptotic sense towards incomplete factors L, U
suchthat R=A—-L-U =0|s

1> 7
i1<J

PariLU Algorithm

* Fixed-Point based algorithm for

computing ILU;

* Fine-grained parallelism and

asynchronous execution;

* Faster than Level-Scheduling
* QOutperforms NVIDIA’s cuSPARSE ILU

Matrix NVIDIA Speedup
(UFMCQ) cuSPARSE

APA 61. ms 8.8 ms 6.9
ECO 107.ms 6.7 ms 16.0
G3 110. ms 12.1 ms 9.1
OFF 219. ms 25.1 ms 8.7
PAR 131. ms 6.1 ms 21.6
THM 454. ms 15.7 ms 28.9
L2D 112. ms 7.4 ms 15.2
L3D 94. ms 47.5 ms 2.0

Chow, Anzt, Dongarra, ISC 2015

1Chow and Patel. “Fine-grained Parallel Incomplete LU Factorization”. /n:SIAM J. on Sci. Comp. (2015).

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

10/02/2019

Considerations

(1. Selecta set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\4. Repeat until the preconditioner quality stagnates. j

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

* This isthe underlying idea of Edmond Chow’s parallel ILU algorithm?:

1 (j—1 L
w5 \@ij = 2 k= Z'kukz') i >
L-U=Als = Flij,uy) =" Zji—lzk_l) g
i = D p—1 likUkj, i < j
Fixed-point sweep
* We may not need high accuracy here, approximates
because we may change the pattern again... One single fixed-point sweep. (M EEEEUS

1Chow and Patel. “Fine-grained Parallel Incomplete LU Factorization”. /n:SIAM J. on Sci. Comp. (2015).

53 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Selecta set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU

residual & check
convergence.

\4. Repeat until the preconditioner quality stagnates.)

* Maybe use the ILU residual norm as quality metric.

ILU residual R = A - L X U
*x ok kK * * ok x K * * * ok x K *
* ok ok ok kK * x *x * % * % * % * %
R S S S A ol x o+ % * Kk ok *
* Kk x * * B * e * x *
KKk * K% * * * * * * ok
*x ok ox ok ok ok * * * * * % * % *

Fixed-point sweep

approximates
incomplete factors.

54 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Select a set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU

residual & check
\4. Repeat until the preconditioner quality stagnates.) convergence.

* The sparsity pattern of A might be a good initial start for nonzero locations.

Fixed-point sweep

approximates
incomplete factors.

55 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

[1. Selecta set of nonzero locations. \
2. Compute values in those locations such that Sﬁ?‘t:grlzgf;'mj
A~ L -U isa “good” approximation. residual.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU
residual & check ©
convergence. g

\4. Repeat until the preconditioner quality stagnates.)

* The sparsity pattern of A might be a good initial start for nonzero locations. 9%

* Then, the approximation will be exact for all locationsSy = S(Lq + Up) ° .
and nonzero inlocations S; = (S(A) U S(Lo - Uy)) \ S(Lo + Up)*.

* *x * % * * * X Kk % * * X Kk % *
*x X % * x * % * % * % * X Kk Kk X *
*oxox | x xx % * o oxokox Fixed-point sweep
* * * * * Kok KK * approximates

* * % * * * o * o * o incomplete factors.
* *% * % * X * x * * X Kk Kk KX *

1Saad. “Iterative Methods for Sparse Linear Systems, 2™ Edition”. (2003).

56 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Considerations

f 1. Selecta set of nonzero locations. \
2. Compute values in those locations such that wﬁ?‘t:grl\zgf;mf
A~ L -U isa “good” approximation. residual.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU
residual & check ©
convergence. g

\4. Repeat until the preconditioner quality stagnates.)

* The sparsity pattern of A might be a good initial start for nonzero locations. 9%

* Then, the approximation will be exact for all locationsSy = S(Lq + Up) ° .
and nonzero inlocations S; = (S(A) U S(Lg - Uy)) \ S(Lo + Up)*.

* Adding all these locations (level-fill!) might be good idea...

Add locations to
sparsity pattern of
incomplete factors.

S
x ok * * * * ok Kk x * EC
* * K * x * & * '?f.gn
o 5@ ee

2 0 © :
* xox xox * Fixed-point sweep 2, S0
* * % * * approximates T,

* % x * incomplete factors. "%%Q
* * K * ok * i
se0t e,
* 9k,

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

10/02/2019

Considerations

58

Select a set of nonzero locations.

A~ L-U isa “good” approximation.

2. Compute values in those locations such that

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

~

Repeat until the preconditioner quality stagnates.)

Identify locations
with nonzero ILU
residual.

* The sparsity pattern of A might be a good initial start for nonzero locations.

* Then, the approximation will be exact for all locationsSy = S(Lq + Up)
and nonzero inlocations S; = (S(A) U S(Lg - Uy)) \ S(Lo + Up)*.

* Adding all these locations (level-fill!) might be good idea, but adding these

will again generate new nonzero residuals S = (S(A4) U S(L1-Uy)) \ S(L1+ Uy)

x *x Kk K * * * kK
* * ok * * x % *x %
* ok ok x Kk ok *
* * I x

* * % x * *
N * % X Kk K ok x %

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

* ok b

b S S S S o

* ok o o X X

b D I S

¥k ok kK

* ok o o X

b S . S
D D . S . o

Compute ILU
residual & check
convergence.

sparsity pattern of
incomplete factors.

Fixed-point sweep

approximates
incomplete factors.

Add locations to

10/02/2019

Considerations

[1. Selecta set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* At some point we should remove some locations again, e.g. the smallest elements,

and start over looking at locations R = A — Ly - Uy, ...

Remove smallest
elements from
incomplete factors.

59 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Identify locations
with nonzero ILU
residual.

@,8@5*-, Select a threshold
Oty separating smallest
e elements.

Compute ILU

residual & check ©
convergence.

Add locations to
sparsity pattern of
incomplete factors.

Fixed-point sweep
approximates
incomplete factors.

10/02/2019

ParILUT Algorithm

60

Interleaving fixed-point sweeps approximating values
with pattern-changing symbolic routines.

Fixed-point sweep
approximates
incomplete factors.

Remove smallest
elements from
incomplete factors.

Identify locations
with nonzero ILU

ParlLUT cycle

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

@'@é@f':._
2 8., Select a threshold
e, -:::‘%@ separating smallest
W, elements.
it

Fixed-point sweep
approximates

incomplete factors.

Compute ILU
residual & check ©
convergence. g
&
OOoo
oO
%P
%o
o
o
Add locations to
sparsity pattern of
incomplete factors.
E(:?.:.
gl
g
'1.<§@ :.:.
.:':@@@Q':
g,
..:%.%::.
i,
10/02/2019

ParILUT Quality

61

80

—ILU(0)
—ILUT
——ParlLU

CG lterations
N
o

N
(@)
T

—
o
T

0 L
0 2

4

6

8

Number of ParlCT steps (2 sweeps per step)

Top-level solver iterations as quality metric.

Few sweeps give a “better” preconditioner than ILU(O).

Better than conventional ILUT?

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

10

10/02/2019

ParILUT Quality

62

80

70

CG lterations
N
o

—ILU(0)
—ILUT
——ParlLU

2 4 6 8
Number of ParICT steps (2 sweeps per step)

* Top-level solver iterations as quality metric.

* Few sweeps give a “better” preconditioner than ILU(O).

e Better than conventional ILUT?

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

10

—_
o

©

Number of ParICT steps (2 sweeps per step)
(@)]

500

1000
Pattern discrepancy

1500

ILUT

10/02/2019

ParILUT Quality

80

—ILU(0)
—ILUT

——ParlLU

CG lterations
N
o

N
(@)
T

—
o
T

0 L
0 2

4

6

8

Number of ParlCT steps (2 sweeps per step)

* Top-level solver iterations as quality metric.

* Few sweeps give a “better” preconditioner than ILU(O).

e Better than conventional ILUT?

63 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

10

—_
o

Number of ParICT steps (2 sweeps per step)
(@)]

|2 PariLUT |

500

ILU(0)

* Patternconverges after few sweeps.
* Pattern “more like” ILUT than ILU(O).

1000

Pattern discrepancy

1500

ILUT

10/02/2019

ParILUT Scalability

thermal2 matrix from SuiteSparse, RCM ordering, 8 el/row.

70 w w
CSC— CSR Bl CSC « CSR
|| O Candidates 0.9 § Il Candidates
60 ¢ Residuals [IResiduals
* ILU-norm 0.8 NEILU-norm
50 - CSR— CSC 0
+ Add c
o A Sweept Lo
2407] o Select2Rm 3
@ x Remove ©0
Q o0 | V Sweep?2 E
n 30 iy =0
T

7 e
A s

0 10 20 30 40 50 60 70 10
Number of Threads

e Building blocks scale with 15% - 100% parallel efficiency.
* Transposition and sort are the bottlenecks.

* Overall speedup ~35x when using 68 KNL cores.

64 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

20

30 40
Number of Threads

50

60

10/02/2019

ParILUT Scalability

topopt1l20 matrix from topology optimization, 67 el/row.

70

BlCSC « CSR
Il Candidates
[Residuals
I ILU-norm

CSC— CSR
Candidates
Residuals
ILU-norm
50 - CSR— CSC
Add
Sweep1
Select2Rm
Remove

o
S
<o

N
o
4 x0OpP+

Runtime fraction

Ov 10 20 30 40 50 60 70 10 20 30 40 50 60
Number of Threads Number of Threads

e Building blocks scale with 15% - 100% parallel efficiency.
 Dominated by candidate search.

e Overall speedup ~52x when using 68 KNL cores.

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

ParIlLUT Performance across Manycore architectures

66

We compare against ILUT in SuperLU from LBNL —and thank Sherry Li for help and support in doing this comparison.

The SuperLU ILUT is a sequential implementation — ParILUT is the first parallel ILUT algorithm.

103

\\\\Hw
>

-
o
[\
T

-
o
T

v
A

Speedup over SuperLU ILUT on KNL

v
A

[
x ParlLUT-OMP on KNL
ParlLUT-GPU on K40

A ParlLUT-GPU on P100
Vv ParlLUT-GPU on V100 |

\\\\\Hl

\\\\\Hl

10°

ani7 apal apa2 cgi0 cgiil jacO jac9 maj thmi1 thm2 tdM tTC tmt op60 op120 tor ven

Bibliog ra phy: 1Chow et al. “Asynchronous Iterative Algorithm for Computing Incomplete Factorizations on GPUs”. In ISC 2015.

2Anzt et al. “ParlLUT — A new parallel threshold ILU”. In: SIAM Journal on Scientific Comp. (2018).
3Ribizel et al. “Approximate and Exact Selection on GPUs”. /n AsHES workshop, 2019.
4Anzt et al. “ParlLUT — A parallel threshold ILU for GPUs”. In IPDPS conference, 2019.

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

10/02/2019

The Manycore Challenge

S -
> Reformulate algorithms as element-parallel fixed-point Iterations
. e,
Identify locations
° . i) X with nonzero ILU
* Algorithms need fine-grained parallelism residual.
[]
ixed-poi C ILU
-- thousands of SIMT threads! O roimates resitunl & check B
¢ incomplete factors. convergence. R
* Global synchronizations are killing performance; o
* * Runtime scheduling of thread blocks virtually impossible;
’ ParILUT cycle °
* Memory access pattern central (coalesced data access); Remove smallest Add locations to
elements from sparsity pattern of
. incomplete factors. incomplete factors.
* Asynchronous algorithms needed;
» Reformulation as fixed-point iteration; i
@g@)” Select a threshold Fixed-point sweep
- separating smallest approximates
elements. incomplete factors.
Copyright@ORNL
67 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Software Challenge

68

Software is an central componentin Exascale Computing!
* We should focus more on sustainable software than on hardware development.

* Software often lives longer than a HPC system.

Close collaboration with hardware developers and Universities is key to prepare for future hardware!

We still lack the acceptance of scientific software engineers!
* The standard perception is: we buy new hardware, your core runs faster....

* We need the academic acceptance of scientific software engineers!

 We are running an inefficient, publication-driven system ignoring the importance of production code!

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

10/02/2019

Creating a Sustainable HPC Landscape

The Typical Publicationin HPC Conferences / Journals

* An article describing a new algorithm / implementation
outperforming existing solutions.

e Performance benchmarks on high-end HPC resources
(not even archived)

* Internal prototype code (not publicly accessible)

How does the community benefit from reading this?
+ New ideas presented;

+ Performance evaluations presented;

- Performance evaluations are typically “ s
- Users / Application Scientists need to ;
- Difficultif are provided,;

69 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Creating a Sustainable HPC Landscape

70

The Typical Publicationin HPC Conferences / Journals

* An article describing a new algorithm / implementation
outperforming existing solutions.

e Performance benchmarks on high-end HPC resources
(not even archived)

* Internal prototype code (not publicly accessible)

How does the community benefit from reading this?

+ New ideas presented;

+ Performance evaluations presented;

- Performance evaluations are typically “selective”;

- Users / Application Scientists need to re-implement code;
- Difficultif few details are provided,

- Notintegrated into community packages;

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Established community software packages

are the powertrain behind many scientific simulation codes;
often fall shortin providing production-ready implementations
of novel algorithms;

often accept merge requests that lack comprehensive
documentation and rigorous performance assessment;

PETSc

I il INUS

/1yre-

== Ginkgo

GROMACS .-

FAST. FLEXIBLE. FREE.

10/02/2019

Creating a Sustainable HPC Landscape

The Typical Publicationin HPC Conferences / Journals

An article describing a new algorithm / implementation
outperforming existing solutions.

Performance benchmarks on high-end HPC resources
(not even archived)

Internal prototype code (not publicly accessible)

How does the community benefit from reading this?

New ideas presented,;

Performance evaluations presented;

Performance evaluations are typically “selective”;

Users / Application Scientists need to re-implement code;
Difficult if few details are provided;

Not integrated into community packages;

~

In a perfect world, new algorithms,

implementations & performance results are

e fully reproducible;

publicly accessible;

ready to be used by the community / domain scientists;

integrated into community packages; /

71

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Established community software packages

are the powertrain behind many scientific simulation codes;
often fall shortin providing production-ready implementations
of novel algorithms;

often accept merge requests that lack comprehensive
documentation and rigorous performance assessment;

PETSc

I il INUS

/1yre-

GROMACS ...

== Ginkgo

MAGMA
o{or

FAST. FLEXIBLE. FREE.

10/02/2019

Creating a Sustainable HPC Landscape

The Typical Publicationin HPC Conferences / Journals

An article describing a new algorithm / implementation
outperforming existing solutions.

Performance benchmarks on high-end HPC resources
(not even archived)

Internal prototype code (not publicly accessible)

How does the community benefit from reading this?

New ideas presented,;

Performance evaluations presented;

Performance evaluations are typically “selective”;

Users / Application Scientists need to re-implement code;
Difficult if few details are provided;

Not integrated into community packages;

~

In a perfect world, new algorithms,

implementations & performance results are

e fully reproducible;

publicly accessible;

ready to be used by the community / domain scientists;

integrated into community packages; /

72

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Established community software packages

are the powertrain behind many scientific simulation codes;
often fall shortin providing production-ready implementations
of novel algorithms;

often accept merge requests that lack comprehensive
documentation and rigorous performance assessment;

Why are we not changing the system?

effort(Prototype Code) << effort(Production Code) :

Little academic reward for sustainable software development;

Promotion and appointability based on scientific papers;

Status Quo Extremely inefficient and unsatisfying!

10/02/2019

My Efforts towards a Sustainable HPC Landscape

1. Sustainable Software Development in the HYIG FiNE

Provide

, Feedback

Cl Build Cl Test

Pu?

Developers

Repository

Continuous Integration (Cl)

3 Merge into
0 glt _ Master Branch

/ Master Branch

Users

73 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Core Development | 4

Code Review

CMak @ Team . N
M googletest = '
[Sourceco e]»[Acm«amﬁ]»[0 goog]]

Ginkgo

C++ library for Sparse Linear Algebra
Following the SOLID design principle
Focus on Multi- and

Manycore Technology

Latest algorithm developments

10/02/2019

My Efforts towards a Sustainable HPC Landscape

1. Sustainable Software Development in the HYIG FiNE

Provide
, Feedback .

Core Development

s = ﬁﬁ\ Team Mathematics Computer Science CSE
letest % Advance Theory Develop Fixed-Point Realize new building
7.\:;—0 » A % » % Z= ‘ L on Fixed-Point based Algorithms on blocks for large-scale
Pu ? Source Code Cl Build Cl Test E— in Numerics New Hardware Scientific Simulations
(o) go
Code Review
Continuous Integration (Cl)
Developers e C++ library for Sparse Linear Algebra

I'he Art ot Writing Scientitic Software in an

. : FR demic Environment
. Merge into * Following the SOLID design principle AC?'
e glt ' Master Branch

Master Branch * Focus on Multi- and
/ aster Branc Manycore TeChnO|Ogy

* Latestalgorithm developments

2. Community Engagement:
Changing the Culture of Academic Software Development
Users * Promote Sustainable Algorithm and Software Development (PASC 2019)
www.bit.ly/ContinuousBenchmarking

Address the Challenges of Academic Software Development (BSSw Blog Article)
www.bit.ly/AcademicResearchSoftware

Argue for accepting Software Patches as Full Conference Contributions (PDSEC 2019)
www.bit.ly/AreWeDoingTheRightThing

Welcome Software Patches as Conference Contributions at
Workshop on Scalable Data Analytics in Scientific Computing (SDASC 2020) in conjunction with ISC’20 in Frankfurt

74 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Core Concept: Separate Algorithm from Kernels o Glnkgo

Library core contains architecture-agnostic Core

algorithm implementation; Library Infrastructure
Algorithm Implementations
* lterative Solvers
* Preconditioners

Architecture-specific kernels execute the

algorithm ontarget architecture; /

Kernels * Accessor
SpMV

Solver kernels
Precond kernels

75 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

[] H . -
Core Concept: Separate Algorithm from Kernels — Glnkgo

Library core contains architecture-agnostic Core

algorithm implementation; Library Infrastructure
Algorithm Implementations

» lterative Solvers
 Preconditioners

Architecture-specific kernels execute the

algorithm ontarget architecture; /
/" Reference

Reference kernels
Kernels * Accessor

SpMV

Solver kernels
Precond kernels

Reference are sequential
kernels to check correctness

of algorithm designand
optimized kemels;

76 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

77

Core Concept: Separate Algorithm from Kernels

Library core contains architecture-agnostic
algorithm implementation;

Runtime polymorphism selects the rightkernel
depending on the target architecture;

Architecture-specific kernels execute the
algorithm on target architecture;

Kernels

/" Reference

Reference kernels

* Accessor

SpMV

Solver kernels
Precond kernels

o

~

Core

Library Infrastructure
Algorithm Implementations
» lterative Solvers
* Preconditioners

== Ginkgo

/
/" CUDA

P

NVIDIA-GPU kernels
* Accessor

SpMV

Solver kernels
Precond kernels

/

Reference are sequential

kernels to check correctness

of algorithm designand
optimized kemels;

e

N

/

\

/ OpenMP

OpenMP-kernels
Accessor

SpMV

Solver kernels
Precond kernels

/.

N

/

Optimized architecture-specific kernels;

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

10/02/2019

78

Core Concept: Separate Algorithm from Kernels

Library core contains architecture-agnostic
algorithm implementation;

Runtime polymorphism selects the rightkernel
depending on the target architecture;

Architecture-specific kernels execute the
algorithm on target architecture;

Kernels

/" Reference

Reference kernels

* Accessor

SpMV

Solver kernels
Precond kernels

o

~

Core

Library Infrastructure
Algorithm Implementations
» lterative Solvers
* Preconditioners

== Ginkgo

~

/~ CUDA

NVIDIA-GPU kernels
* Accessor

SpMV

Solver kernels
Precond kernels

/

Reference are sequential

kernels to check correctness

of algorithm designand
optimized kemels;

o

\

\

/ OpenMP

OpenMP-kernels
Accessor

SpMV

Solver kernels
Precond kernels

4

/ .

~

/

Optimized architecture-specific kernels;

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

googletest

10/02/2019

° H ' -
Core Concept: Separate Algorithm from Kernels o Glnkgo

Library core contains architecture-agnostic Ll

algorithm implementation; Library Infrastructure
Algorithm Implementations
* lterative Solvers
* Preconditioners

Runtime polymorphism selects the rightkernel
depending on the target architecture;

Architecture-specific kernels execute the

algorithm on target architecture; / \ S s o _
/" Reference / CUDA \ / OpenMP \ / HIP
Reference kernels NVIDIA-GPU kernels OpenMP-kernels AMD-GPU kernels
Kernels * Accessor » Accessor * Accessor » Accessor
SpMV SpMV SpMV « SpMV

Solver kernels
Precond kernels

Solver kernels
Precond kernels

o & 5

Reference are sequential Optimized architecture-specific kemnels;
kernels to check correctness

of algorithm designand
optimized kemels;

Solver kernels . .
Precond kernels { Multi-GPU
. NVIDIA-GPU kernels
/ \ « Accessor
SpMV
Solver kernels
Precond kernels

&)

79 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

/.

googletest

My Efforts towards a Sustainable HPC Landscape

1. Sustainable Software Development in the HYIG FiNE

Provide

, Feedback c D I ¢ .
ore Deveiopmen
s - . Team . <58
% A CMake %9399!3535 - i
Push Source Code » Cross-ﬁlarlo;:jMake ») % G e k
; Cl Bui Cl Test
’ Repository - e ' Code Review ' ln go
Continuous Integration (Cl)

Developers e C++ library for Sparse Linear Algebra

: [erge into : * Following the SOLID design principle
0 glt _ M'\a/lstfr Bratnch °

Focus on Multi- and

h
/ MasterBranc Manycore Technology
* Latestalgorithm developments

Users

80 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

10/02/2019

My Efforts towards a Sustainable HPC Landscape

1. Sustainable Software Development in the HYIG FiNE

Provide

, Feedback '
Core Development

k oogletest
Push Source Code » Accm% » ' googletest ‘ _
’ (Repository] [Cl Build] [Cl Test] code — ' G]

e C++ library for Sparse Linear Algebra

Continuous Integration (Cl)

Developers
0 it Merge into * Following the SOLID design principle
g i l Master Branch * Focus on Multi- and
M B
/ ki Manycore Technology
* Latestalgorithm developments
U 2. Community Engagement: I'he Art of Writing Scientitic Sottware in an
sers

Academic Environment
we £ ¥ in

Changing the Culture of Academic Software Development

* Promote Sustainable Algorithm and Software Development (PASC 2019)
www.bit.ly/ContinuousBenchmarking

* Address the Challenges of Academic Software Development (BSSw Blog Article)
www.bit.ly/AcademicResearchSoftware

* Argue for accepting Software Patches as Full Conference Contributions (PDSEC 2019)
www.bit.ly/AreWeDoingTheRightThing

81 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

My Efforts towards a Sustainable HPC Landscape

1. Sustainable Software Development in the HYIG FiNE

! H% ACMake
Push Source Code » "“”""""t"”"“*’ »
’ Repository Cl Build

Developers

Provide
Feedback

Cl Test

Code Review
Continuous Integration (Cl)

O git
/ Master Branch

2. Community Engagement:

_ Merge into
Master Branch

Users

Core Development | 4

- Team
o 9999!5F§EE] ‘

Ginkgo

C++ library for Sparse Linear Algebra
Following the SOLID design principle
Focus on Multi- and

Manycore Technology
Latest algorithm developments

Changing the Culture of Academic Software Development

www.bit.ly/ContinuousBenchmarking

www.bit.ly/AcademicResearchSoftware

www.bit.ly/AreWeDoingTheRightThing

82 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Promote Sustainable Algorithm and Software Development (PASC 2019)

Address the Challenges of Academic Software Development (BSSw Blog Article)

Argue for accepting Software Patches as Full Conference Contributions (PDSEC 2019)

kit __enil F aL NE .
Mathematics Computer Science CSE
Advance Theory Develop Fixed-Point Realize new building

on Fixed-Point based Algorithms on blocks for large-scale
Numerics New Hardware Scientific Simulations

I'he Art ot Writing Scientitic Software in an
Academic Environment

10/02/2019

A Healthy Software Development Cycle

"4

Push Source Code
’ Repository

Developers

Users

»

CMake

Cross-platform Make

Cl Build

Continuous Integration (Cl)

O git

SN —

Master Branch

»

_———

83 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Provide
Feedback

Cl Test

googletest l
Google C++ Testing Framework

Core Development Team

g

[

Code Review]

— |

Mergeinto
Master Branch

J

10/02/2019

Software Patches

84

Software patches usually submitted as merge-/

push- request inthe software versioning system (e.g. Git).

The patches are accompanied by detailed documentation

explaining code functionality and feature usage.

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

[ginkgo-project / ginkgo ® Unwatch ~

Code Issues 44 i) Pull requests 7 Projects 0 Wiki Insights

Block-interleaved block storage in block-Jacobi #159

ISV GGGl gflegar merged 3 commits into develop from interleaved_block_jacobi on Nov 26, 2018

(&7 Conversation 10 o Commits 3 ¥, Checks 0 ﬂ Files changed 9

x gflegar commented on Oct 31, 2018 « edited ~ Member

This PR further improves the performance of the block-Jacobi preconditioner for smaller block sizes
by redesigning the way blocks are stored in memory. In addition to column-major storage introduced
in #158, this PR interleaves the blocks to maximize coalescence when a single warp handles multiple
problems.

The idea is shown in the following figure, where the maximum block size allows to interleave 2 blocks
to fill the cache line:

Option 1:

T Legend:
o #2 #4 #6 #8 #10 #12 - Jacobi block
g I —s - leading dimension
?:‘) - - padding
21 1y
§ | 1 #3 #5 #7 #9 #11 #13

\J

Option 2:

T Legend:
© #2 #4 #6 #8 #10 #12 - Jacobi block
5 l, || - - |eading dimension
g au - padding
B 4z #3 #5 #7 #9 #11 #13
o
o

There's trade-off in both approaches depicted in the figure. Option 1 always results in aligned data
access, but consumes more memory in total. Option 2 consumes less memory, but data accesses are
not always aligned.

I'm currently running benchmarks for both options on PizDaint, but the results on an initial
implementation of this | got before suggest that option 2 is faster.

* Star 19 YFork 8

Edit

+481 -169 mmEm

Reviewers
pratikvn]
1 hartwiganzt

tcojean

Assignees

l- gflegar

Labels

Core
Enhancement
Reference

Projects

None yet

Milestone

No milestone

Notifications

«4x Unsubscribe

You're receiving notifications
because your review was
requested.

4 participants

=2

10/02/2019

Software Patches

85

Software patches usually submitted as merge-/
push- request inthe software versioning system (e.g. Git).

The patches are accompanied by detailed documentation
explaining code functionality and feature usage.

The community can comment and review the code.

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

. ginkgo-project / ginkgo

@® Unwatch~ 9

* Star 19 YFork 8

Blo

[s==Xol\

PN

© pratikvn reviewed on Oct 31, 2018

core/preconditioner/block_jacobi.hpp

N

+ Ve
+ * Stride between two columns of a block (as number of elements).
- *
+ * Should be a multiple of cache line size for best performance.

pratikvn on Oct 31, 2018 Member

The cache line size varies across machines and different hardware right? Would you
not like to have this as a parameter then? Or have | misunderstood something ?
gflegar on Nov 1, 2018 Member

You're completely right. This one is an approximation that is actually a (small) multiple
of the cache line size, depending on the combination of hardware and size of the
elements. (E.g. float on NVIDIA GPUs is exactly 1 cache line, double is 2, on CPUs it's
more cache lines).

However having it as a parameter brings a lot of problems that are not yet solved in
Ginkgo:

1. The user is required to know what is the cache line size of the system, or we
somehow have to figure that out by ourselves.

2. Whatever value is passed cannot be smaller than the maximum block size,
otherwise the storage scheme breaks.

3. Since the cache line size is different on the CPU than on the GPU, copying the
object between them would require non-trivial storage transformations (i.e. a
simple memcpy would not be enough).

For that reason, I've just used a compile-time approximation that works correctly (but
not optimally) on all systems, until those problems are solved.

tcojean on Nov 1, 2018 « edited v+ Member

1 don't know of tools to get that for all architectures (both GPU and CPU), there surely
is some, but for the CPU you can at least find the information here on Linux:

/sys/devices/system/cpu/cpud/cache/index®/coherency_line_size

Mine says 64 bytes for example. We could either get this information statically through
CMake (but you have to compile on the final system) or use some executable/functions
to get the information dynamically.

There is also this tool (just a simple function really) for the CPU which has Linux,
MacOS and Windows compatibility.
https://github.com/NickStrupat/CacheLineSize

View changes

Edit

+481 -169 mmEm

ers

Fatikvn C
prtwiganzt

fojean

pees

Flegar

ement

fts

yet

jone

Jestone

cations

«4x Unsubscribe

receiving notifications
}se your review was
Sted.

ficipants

10/02/2019

I ginkgo-project / ginkgo @uUnwatch~ 9 KsStar 19 YFork 8

SOftwa re Pa t c h e S cd u © pratikvn reviewed on Oct 31, 2018

View changes

Blo pr
d “ gflegar commented on Nov 18, 2018 Member L) v

Unlike the V100 version, where both interleaved options were a bit slower, due to some strange

» Software patches usually submitted as merge-/

pUSh' request | n the Software VerSioning SyStem (eg G |t)) ik :I;:;kses in performance for the non-interleaved version, on the V100, interleaved storage (version 2) [
“ V100 performance of 'simple_apply’ step of ‘apply” stage f,)
* The patches are accompanied by detailed documentation R

explaining code functionality and feature usage.

* The community can comment and review the code. g
* The submitter can attach a performance analysis to the
software patch. Illl\
,

8 9 10 1 12 13

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
Block size

I'll generate more details plots and send them around tomorrow.

tcojean on Nov 1, 2018 « edited + Member stone

1 don't know of tools to get that for all architectures (both GPU and CPU), there surely
is some, but for the CPU you can at least find the information here on Linux: Eations

t «x Unsubscribe
/sys/devices/system/cpu/cpud/cache/index®/coherency_line_size
receiving notifications

Se your review was
Mine says 64 bytes for example. We could either get this information statically through Sted.
CMake (but you have to compile on the final system) or use some executable/functions

to get the information dynamically. cipants
There is also this tool (just a simple function really) for the CPU which has Linux, B ‘
MacOS and Windows compatibility.
https://github.com/NickStrupat/CacheLineSize

86 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Software Patches

» Software patches usually submitted as merge-/
push- request inthe software versioning system (e.g. Git).

* The patches are accompanied by detailed documentation
explaining code functionality and feature usage.

* The community can comment and review the code.

* The submitter can attach a performance analysis to the
software patch.

e Software patches can either add new functionality...

87 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

170 mmmm core/preconditioner/block_jacobi.hpp Show comments Copy path = View file

24

L S S S A S T S R S R S N T S A A i A e s A R T S S S S S S R

+78,106 @

}; // namespace detail

// TODO: replace this with a custom accessor
/%%
* Defines the parameters of the interleaved block storage scheme used by
* block-Jacobi blocks.
*
* @tparam IndexType type used for storing indices of the matrix
*/
template <typename IndexType>
struct block_interleaved_storage_scheme {
/*%
* The offset between consecutive blocks within the group.
*/
IndexType block_offset;
/*%
* The offset between two block groups.
*/
IndexType group_offset;
/*%
* Then base 2 power of the group.
*
* I.e. the group contains "1 << group_power elements.
*/
uint32 group_power;

/*%
* Returns the number of elements in the group.
*

* @return the number of elements in the group

*/
GKO_ATTRIBUTES IndexType get_group_size() const noexcept
{
return one<IndexType>() << group_power;
}
/%

* Computes the storage space required for the requested number of blocks.
*
* @param num_blocks the total number of blocks that needs to be stored
*
* @return the total memory (as the number of elements) that need to be
e allocated for the scheme
*/
GKO_ATTRIBUTES IndexType compute_storage_space(IndexType num_blocks) const
noexcept

I

YFork 8

=
2)

pscribe

tifications
W was

10/02/2019

106 mmmm cuda/preconditioner/block_jacobi_kernels.cu Copy path Viewfile [J v YFork 8

namespace kernels {

namespace cuda {

/%%

* A compile-time list of block sizes for which dedicated generate and apply

» Software patches usually submitted as merge-/
push- request inthe software versioning system (e.g. Git).

* kernels should be compiled. =

*/ bn 2)
using compiled_kernels = syn::compile_int_list<l, 13, 16, 32>;

+ + + F o+ o+ o+ o+

namespace kernel { (]

* The patches are accompanied by detailed documentation nasespece {
explaining code functionality and feature usage. '

template <int max_block_size, int subwarp_size, int warps_per_block,
typename ValueType, typename IndexType>
__global__ void __launch_bounds__(warps_per_block *cuda_config::warp_size)
generate(size_type num_rows, co IndexType *__restrict__ row_ptrs,

* The community can comment and review the code. const. TndexType »_restrict,__ col_ids,

const ValueType *__restrict__ values,

- ValueType #__restrict__ block_data, size_type stride,

ValueType #__restrict__ block_data,

preconditioner::block_interleaved_storage_scheme<IndexType>

+ o+ o+

* The submitter can attach a performance analysis to the t
storage_scheme,
SOftwa re patch. const IndexType *__restrict__ block_ptrs, size_type num_blocks)

const auto block_id =

5:1 3 -79,15 +91,18 globa void aunch_bounds varps_per_block *cuda_config::warp_size

* Software patches can either add new functionality... trans_per);

copy_matrix<max_block_size, and_transpose>(
. Or Cha nge / en ha nce existi ng Code. subwarp, block_size, row, 1, perm, trans_perm,
- block_data + (block_ptrs[block_id] * stride), stride);
+ block_data + storage_scheme.get_global_block_offset({block_id),

+ storage_scheme.get_stride());

ubscribe

hotifications
jiew was

template <int max_block_size, int subwarp_size, int warps_per_block,
typename ValueType, typename IndexType>
__global__ void __launch_bounds__(warps_per_block *cuda_config::warp_size)
- apply(const ValueType *__restrict__ blocks, int32 stride,
+ apply(const ValueType *__restrict__ blocks,
+ preconditioner::block_interleaved_storage_scheme<IndexType>
+ storage_scheme, .

const IndexType *__restrict__ block_ptrs, size_type num_blocks,

const ValueType *__restrict__ b, int32 b_stride,

ValueType *__restrict__ x, int32 x_stride)

88 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Software Patches as Conference Contribution

v Full reproducibility and traceability is ensured;

v" Not only reviewers but the complete community can track the software patch;

v" The versioning systems helps to identify the main contributors of a software contribution, ensuring full recognition;
v" The versioning systems also links to the right person in case of technical questions;

v" Novel algorithms and hardware-optimized implementations are quickly integrated into community packages;

v' The code quality is increased as the community can comment on the patches;

v Software patches as conference contributions naturally imply an extremely high level of code documentation;

v Presenting patches at a conference makes the whole community aware of a new feature;

v" Domain scientists can directly interact with software developers;

89 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Software Patches as Conference Contribution

Envisioned Workflow:

1. The algorithm/implementation developer submits a software patch toa community package with
* detailed description of the functionality and code documentation;
e comprehensive performance assessment;
 markthe patch for a conference contribution;
2. The core development team and the community
* comments on the algorithm, the implementation, and the performance;
* reviews and ultimately merges the patch;
3. The developer submits the patch as a conference contribution

* linking to all documentation, performance results, and comments;
e acknowledging significant comments from community;

90 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Software Patches as Conference Contribution

Envisioned Workflow:

1. The algorithm/implementation developer submits a software patch toa community package with

* detailed description of the functionality and code documentation;
e comprehensive performance assessment;
 markthe patch for a conference contribution;
2. The core development team and the community
* comments on the algorithm, the implementation, and the performance;
* reviews and ultimately merges the patch;
3. The developer submits the patch as a conference contribution
* linking to all documentation, performance results, and comments;
e acknowledging significant comments from community;

4. The conference committee / external reviewers doa “light” review of functionality, documentation, performance.
5. If accepted, the conference contribution is presented along with a user tutorial or application examples;

6. The submission isas aregular paper includedinthe conference proceedings

* potentially featuring a shorter general introduction;
* including the algorithm description and performance assessment;

potentially including code segments, digital artifacts, or a link to the merge request;
* listing all (significant) code reviewers/ commenters;

91 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Summary and next steps

* Decouple arithmetic precision from memory precision. e Customized Precision Format
sign exponent flexible length mantissa
N | 1 (%)
* Using customized precisions for memory operations. v | _§
g arbltrary spllttlngs‘ "s
. . . g S
* Speedup of up to 1.3x for adaptive precision S - - - r
(1
. L Value Clusteri Q
block-Jacobi preconditioning. | a"“e " e”ﬁg | <
* Creating a Modular Precision Ecosystem Customized Precision Data Access Routines
I é -
inside === Ginkgo. o
https://github.com/ginkgo-project/ginkgo Hardware
—_—~
B\
— (P HELMHOLTZ
\\"' RESEARCH FOR GRAND CHALLENGES
EXASCALE COMPUTING PROJECT
This research was supported by the Exascale Computing Project (17-SC-20-5C), a collaborative effort of the U.S. Department of Energy
Office of Science and the National Nuclear Security Administration and the Helmholtz Impuls und VernetzungsfondVH-NG-1241.
10/02/2019

92 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Parallelisminside the blocks: Fixed-point sweeps

Fixed-point sweep Compute ILU
approximates residual & check

incomplete factors. convergence.

Fixed-point sweeps approximate values in ILU factors and residual?:

1 NI SN
* Inherently parallel operation. Fli, uig) = 4 9 (aw | k=1 lzk“m) ; L>]
* Elements can be updated asynchronously. aij — };11 iUk, 1< 7

- We can expect 100% parallel efficiency if bilinear fixed-point iteration can be parallelized by elements

number of cores < number of elements

e Residual norm is a global reduction.

(1Ll]]] | Ecoonnnnnnnnnnono

@
[8]2]w]e[o[o]a[7]2[s]2][7]0]1n]o0]2]
|-

OJOJOJE)
[8]7]n]w[o]o a7 2[s]2][7]0]n]o0]2]

[21]20]18]18] 0o [3]7]2[8]2]7 0 [1]0]2]

© [#1]20]13]18] o[9[]7]2[8]2]7 0 [1]o]2]

1Chow et al. “Asynchronous Iterative Algorithm for Computing Incomplete Factorizations on GPUs”.|n ISC2015.

93 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

ParlLUT : Parallelism inside the blocks

. /
Interleaving fixed-point sweeps approximating values Idert'fy lnnztions
with pattern-changing symbolic routines. witki o0 e ILU

YYV ¥ Y

Ccrnmie LU
resiilizil ¢ cneck

Fixexl-pcind «yvep
SEEraxinkies
IncCiag et fixors.

Parallelism inside the building blocks:

* Fixed-Point Sweeps!

ParILUT cycle

e Residuals?
Adidlyzdion: o
spaisity pieittenr of
INCO 3 442X, ZTEors.

Renmionve sina’last

 Identify Fill-In Locations? eernsinim
inccragsetz fasiors.

 Add Locations?

e Remove Locations?

* Select Threshold Separating Smallest Elements

Sela:iatheshold Fixoa) gciing s\v2ep
sepaletirg irnallest cfiEroxniales
1Chow et al. “Asynchronous Iterative Algorithm for Computing Incomplete Factorizations on GPUs”.In ISC2015. A ENNANS, INCLA AP AAE LA 2LOrS.

2Anzt et al. “ParlLUT — A new parallel threshold ILU”. In: SIAM J. on Sci. Comp. (2018).

94 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

ParlLUT : Parallelism inside the blocks

Interleaving fixed-point sweeps approximating values
with pattern-changing symbolic routines.

Parallelism inside the building blocks:

Fixed-Point Sweeps! J

4
Idertfy Ionetions
wilkiadnzere/ILU

YYV ¥ Y

Ccrnmie LU
resiilizil ¢ cneck

Fixexl-pcind «yvep
SEEraxinkies
IncCiag et fixors.

ParILUT cycle

Residualle

Identify Fill-In LocationszJ

Add LocationszJ
Remove Locations? J
(&

Select Threshold Separating Smallest Elements @

Addlzidion: o
spaisity pieittenr of
INCO 3 442X, ZTEors.

Renmionve sina’last
eerianisirom
inccrip iz fazlors.

Sela:iatheshold Fixoa) gciing s\v2ep
sepaletirg irnallest cfiEroxniales
1Chow et al. “Asynchronous Iterative Algorithm for Computing Incomplete Factorizations on GPUs”.In ISC2015. A ENNANS, INCLA AP AAE LA 2LOrS.

2Anzt et al. “ParlLUT — A new parallel threshold ILU”. In: SIAM J. on Sci. Comp. (2018).

95

Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

10/02/2019

Parallel Threshold Selection on GPUs

This is equivalent to the Selection Problem!

SampleSelect Algorithm
Given an unsorted sequence of real numbers

Lo, L1,X2,x3,..-Tp—-1, We want to find the Pick Sp]itters M m

element x;, such that in the sorted sequence

Tip S Tiy S Tjp S Ty -0 STy ST, Sort splitters L I [
L Group by bucket mﬂﬁTﬂﬂWﬂ | | | \
the element x;, is located in position k. f
Select bucket
We do not necessarily need to sort the complete sequence!
Pick splitters T
. . Sort splitters J 1
. Approximate and Exact Selection on GPUs
= Tobias Ribizel*, Hartwig Anzt*! Group by bucket (O]
< *Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
il tInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

‘ { / ‘ tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

Tobias Ribizel http://bit.ly/SampleSelectGPU

96 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Parallel Threshold Selection on GPUs

This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers
Zo,T1,22,23,...Tn—1, we want to find the
element x;, such that in the sorted sequence

Tip SXjy S Tjy, KTy <<y, <...T;,

!

k

the element x;, is located in position k.

We do not necessarily need to sort the complete sequence!

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*t
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
. tnnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

‘ { / ‘ tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

Tobias Ribizel http://bit.ly/SampleSelectGPU

97 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Parallel Threshold Selection on GPUs

This is equivalent to the Selection Problem!

SampleSelect Algorithm
Given an unsorted sequence of real numbers

o, T1,%2,T3,...Tn—1, we want to find the Pick splitters rm-l_m‘rrﬂ—h'hm W

element x;, such that in the sorted sequence

Tip STy STy STy <0 <y, <TG,

!

k

the element x;, is located in position k.

We do not necessarily need to sort the complete sequence!

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*t
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
tnnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA
tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

Tobias Ribizel http://bit.ly/SampleSelectGPU

98 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Parallel Threshold Selection on GPUs

This is equivalent to the Selection Problem!

SampleSelect Algorithm
Given an unsorted sequence of real numbers

Lo, L1,X2,x3,..-Tp—-1, We want to find the Pick Sp]itters M m

element x;, such that in the sorted sequence

Tiy S @y Sy, STy < -0 < ?zk < T, Sort splitters

i UL

the element x;, is located in position k.

Splitters separate buckets

We do not necessarily need to sort the complete sequence!

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*t
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
il tnnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

‘ { / ‘ tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

Tobias Ribizel http://bit.ly/SampleSelectGPU

99 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Parallel Threshold Selection on GPUs

This is equivalent to the Selection Problem!

SampleSelect Algorithm
Given an unsorted sequence of real numbers

Zo,T1,x2,T3,..-Tn—1, we want to find the Pick splitters Wﬂﬂﬂﬂhﬂw TI—H

element x;, such that in the sorted sequence

Tip SXjy S Tjy, KTy <<y, <...T;,

T Sort splitters 0 J [

k GI‘Ollp by bucket WWWWIT -ﬂ-ﬂ

the element x;, is located in position k.

We do not necessarily need to sort the complete sequence!

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*t
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
. tnnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

‘ { / ‘ tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

Tobias Ribizel http://bit.ly/SampleSelectGPU

100 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Parallel Threshold Selection on GPUs

This is equivalent to the Selection Problem!

SampleSelect Algorithm
Given an unsorted sequence of real numbers

Zo,T1,x2,T3,..-Tn—1, we want to find the Pick splitters Wﬂﬂﬂﬂhﬂw TI—H

element x;, such that in the sorted sequence

Tig S Tiy S Tig S Tig S0+ STy, S oo Ty Sort splitters : I [
k GI'Ollp by bucket Wmm | | | \
the element x;, is located in position k. f
Select bucket

We do not necessarily need to sort the complete sequence!

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*t
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
. tnnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

‘ { / ‘ tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

Tobias Ribizel http://bit.ly/SampleSelectGPU

101 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Parallel Threshold Selection on GPUs

This is equivalent to the Selection Problem!

SampleSelect Algorithm
Given an unsorted sequence of real numbers

Zo,T1,x2,T3,..-Tn—1, we want to find the Pick splitters Wﬂﬂﬂﬂhﬂw TI—H

element x;, such that in the sorted sequence

Tip S Tiy S Tip S Tig S+ S Tiyg STy Sort splitters I I [
k GI'Ollp by bucket Wmm | | | \
the element x;, is located in position k. f
Select bucket
We do not necessarily need to sort the complete sequence!
Pick splitters WD

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*t
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
. tnnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

‘ { / ‘ tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

Tobias Ribizel http://bit.ly/SampleSelectGPU

102 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Parallel Threshold Selection on GPUs

This is equivalent to the Selection Problem!

SampleSelect Algorithm
Given an unsorted sequence of real numbers

Zo,T1,x2,T3,..-Tn—1, we want to find the Pick splitters Wﬂﬂﬂﬂhﬂw TI—H

element x;, such that in the sorted sequence

Tip S Tiy S Tip S Tig S+ S Tiyg STy Sort splitters I I [
k GI'Ollp by bucket Wmm | | | \
the element x;, is located in position k. f
Select bucket
We do not necessarily need to sort the complete sequence!
Pick splitters T
Sort splitters J 1

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*t
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
. tnnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

‘ { / ‘ tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

Tobias Ribizel http://bit.ly/SampleSelectGPU

103 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Parallel Threshold Selection on GPUs

This is equivalent to the Selection Problem!

SampleSelect Algorithm
Given an unsorted sequence of real numbers

Lo, L1,X2,x3,..-Tp—-1, We want to find the Pick Sp]itters M m

element x;, such that in the sorted sequence

Tip S Tiy S Tjp S Ty -0 STy ST, Sort splitters L I [
L Group by bucket mﬂﬁTﬂﬂWﬂ | | | \
the element x;, is located in position k. f
Select bucket
We do not necessarily need to sort the complete sequence!
Pick splitters T
. . Sort splitters J 1
. Approximate and Exact Selection on GPUs
= Tobias Ribizel*, Hartwig Anzt*! Group by bucket (O]
< *Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
il tInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

‘ { / ‘ tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

Tobias Ribizel http://bit.ly/SampleSelectGPU

104 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Parallel Threshold Selection on GPUs

* We only copy elements of the bucket we are interested in; sampleSelect Algorithm

* In case of identical splitter elements, they are placedinan M W
equality bucket; Pick splitters

* If targetrankisinan equality bucket, the algorithm can Sort splitters O 1 I

terminate early by returning lower bound; mmmm ﬂ'ﬂ
Group by bucket

* For sorting the splitters, small input datasets, and the lowest
recursion level a bitonic sort in shared memory is used;

* Use a binary search tree to sort elements into the buckets;

105 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Parallel Threshold Selection on GPUs

Global Memory Atomics

Global Atomics]

* Run SampleSelect using all resources on complete data set;

e Use global atomics to generate bucket counts;

106 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Shared Memory Atomics

[52 5554 ss] o7 5

S1

59

53

S4

S5

S6

S7

S8

* Split data set into chunks, assign to thread blocks;
* Eachthread block runs bucket count on its data;

Shared Memory Atomics

* Use aglobal reduction to get global bucket counts;

10/02/2019

Parallel Threshold Selection on GPUs 8 : global memory atomics
-s: shared memory atomics

1le9 lel0
_ 54 —&— sample-g single precision _ 41 —X- sample-s
» —¥— sample-s » —— quick-s
Ly ~&— quick-g 8 ~&— quick-g
GEJ —E— quick-s GEJ 31 —&— sample-g
L 3 4 L
§ 2 §
NVIDIA K40 % NVIDIA v100 % 4 -
o N o
£ £
0 4 0 -
2III.6 2;[8 250 2I22 254 256 2|28 2III.6 2;[8 250 2I22 254 256 2|28
number of elements number of elements
1le9 lel0
51 —&— sample-g double precision 3.5 1 =¥ sample-s
o —&— quick-g £ 34 —B— quicks
g 4 4 ¥~ sample-s 42 ~&— quick-g
g —B- quick-s g 2.5 1 &~ sample-g
9 34 2 2.0 -
= = 3x over QuickSelect
3 24 5 1.5 4
& &
o o 1.0
3 3
© 1+ o
< £ 0.5 -
0 - 0.0 &
216 918 520 22 924 526 528 216 18 520 22 24 926 928
number of elements number of elements

107 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Approximate Threshold Selection

SampleSelect Algorithm

e et AT T

mﬁ[ﬂﬂﬂﬂﬂ]ﬂﬂﬂm
t

Pick splitters
Sort splitters
Group by bucket

Select bucket

Pick splitters LIl I
Sort splitters nnl
i 0 1N

Group by bucket

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*t
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
TInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA
tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU

108 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

We do not descent to the lowest level of the
recursion tree if we accept an approximate threshold.

* Accuracy depends on the ratio splitters vs. dataset size;
* Independent of value distribution (works on ranks, only);

lell

NVIDIA V100 GPU

0.8

0.6

0.4

0.2

throughput (elements / s)

| A

128 buckets

256 buckets
512 buckets

111024 buckets

/
/
/
/

-H+= Approximate selection
-@®- Exact selection

0.0

0.0
relative approximation error (

0.2 0.4

0.6 0.8

result — exact
| | %)

Approximate selection on 228 uniformly distributed single precision
values using 1 recursion level, only.

10/02/2019

Approximate Threshold Selection

Impact of exact/approximate SampleSelect on ParILUT preconditioner quality

ANI5
Q ‘]
- -% ParlLUT-GPU w. exact Sampleselect ||
FA ~{ParlLUT-GPU w. approx. Sampleselect -
w250 i]
€l]
S 1A
o SR
2200]
2
L .
= y
G 150 \]
R VY, S
Qs Qs =@rao, oo
0 4 6 8 10

ParlLUT steps

109 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

1100
1000

900

700
600

500

GMRES iterations

300

8004

400 ¢

ANI6
—ILU(0)
- ParlLUT-GPU w. exact Sampleselect |1
0~ ParlLUT-GPU w. approx. Sampleselect ||

i\

Ay 1

\
Y]
\
N]
\
\
I 3]
\o

L }} N (
RN va’o
| M“‘" | |

0 2 4 6 8 10

ParlLUT steps
10/02/2019

Parallelism inside the blocks: Candidate search

Identify locations

with nonzero ILU
residual.

Identify locations that are symbolically nonzero: S*=(S(4) U S(L-U)) \S(L+U)
 Combination of sparse matrix product and .
: sparse matrix product

sparse matrix sums.
e Building blocks available in SparseBLAS. sparse matrix sum
* Blocks can be combined into one kernel for | |

higher (memory) efficiency. |
* Kernel can be parallelized by rows. sparse matrix sum

e Cost heavily dependent on sparsity pattern.

* Kernel performance bound by memory bandwidth.

* Design specialized Kernel 2.

2Anzt et al. “ParlLUT — A new parallel threshold ILU”. In: SIAM J. on Sci. Comp. (2018).

110 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

-

10/02/2019

ParlLUT Performance on GPUs

' —
Impact of exact(1% bar) / approximate (2"? bar) SampleSelect on ParILUT runtime breakdown

NVIDIA V100 GPU.
Matrices taken from Suite Sparse Matrix Collection.

—

Bl CSC + CSR
[ICandidates
[Residual
"/l Add

[ISweeps

I Select

| I Remove

o 9
© ©
[

©
\l

©
fo)}

Runtime fraction
© o o o
N w SN (@)
\ \ \ \

©
—
\

o

ani7 apal apa2 c¢gl10 «cgi1 jacO jac9 maj thm1 thm2 tdM tTC tmt op60 op120 tor ven

111 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

ParlLUT Performance on GPUs

ParlLUT performance across different GPU generations: 1%t bar: NVIDIA K40
2"d bar: NVIDIA P100

3" bar: NVIDIA V100
Matrices taken from Suite Sparse Matrix Collection.

—

Bl CSC + CSR
[ICandidates
[Residual
"/l Add

[ISweeps

I Select

| I Remove

o 9
© ©
[

©
\l

©
fo)}

Runtime fraction
© o o o
N w SN (@)
\ \ \ \

©
—
\

o

ani7 apal apa2 c¢g10 cg1i1 jacO jac9 maj thm1 thm2 tdM tTC tmt topt60 opt120 tor ven

112 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Challenge: Iterative Solution of a Sparse Linear System

We iteratively solve a linear system of the form Az = b
Where A € R™*"nonsingular and b,z € R"”

The convergence rate typically depends on the
conditioning of the linear system, which is the ratio
between the largest and smallest eigenvalue.

)\maac 1
conds(A) = — Amin _ condy (A1
1

)\mz’n

>\maa:

113 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Challenge: Iterative Solution of a Sparse Linear System

We iteratively solve a linear system of the form Az = b
Where A € R™*"nonsingular and b,z € R"”

The convergence rate typically depends on the
conditioning of the linear system, which is the ratio

between the largest and smallest eigenvalue.
1

)\max i —
conds(A) = = A"im = condy (A1)

>\maa:

)\mz’n

Using a preconditioner M ~ A1, we can transform the
linear system into a system with a lower condition number:

M Ax = Mb (left preconditioned)

114 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Challenge: Iterative Solution of a Sparse Linear System

We iteratively solve a linear system of the form Az = b
Where A € R™*"nonsingular and b,z € R"”

The convergence rate typically depends on the
conditioning of the linear system, which is the ratio

between the largest and smallest eigenvalue.
1

)\max i —
conds(A) = = A"im = condy (A1)

)\mz’n

>\maa:

Using a preconditioner M ~ A1, we can transform the
linear system into a system with a lower condition number:

M Ax = Mb (left preconditioned)

If we now apply the iterative solver to the preconditioned
System M Ax = Mb, we usually get faster convergence.

Assume M = AL then: x = M Ax = Mb.

Solution right available, but computing
M = A~ tisexpensive...

115 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

The Challenge: Iterative Solution of a Sparse Linear System

We iteratively solve a linear system of the form Az = b
Where A € R™*"nonsingular and b,z € R"”

The convergence rate typically depends on the
conditioning of the linear system, which is the ratio

between the largest and smallest eigenvalue.
1

)\max i —
conds(A) = = A"im = condy (A1)

4X7nin

>\maa:

Using a preconditioner M ~ A1, we can transform the

linear system into a system with a lower condition number:

M Ax = Mb (left preconditioned)

If we now apply the iterative solver to the preconditioned
System M Ax = Mb, we usually get faster convergence.

Assume M = A~ L then: © = M Ax = Mb.
Solution right available, but computing
M = A~ tisexpensive...

116 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

Explicitly forming M Ais very expensive. The preconditioner
is usually applied implicitly in the differentiteration steps.

10/02/2019

The Challenge: Iterative Solution of a Sparse Linear System

We iteratively solve a linear system of the form Ax = b Explicitly forming M Ais very expensive. The preconditioner
Where A € R™*"nonsingular and b,z € R" is usually applied implicitly in the differentiteration steps.

The convergence rate typically depends on the
conditioning of the linear system, which is the ratio

between the largest and smallest eigenvalue. : s
1 approximate factorization:

)\ma:n Amin —
condy(A) = = 2min = condy(A™) AxL-U

)\mz’n

Instead of forming the preconditioner M ~ A~ explicitly,
Incomplete Factorization Preconditioners (ILU) try to find an

>\maa:

In the application phase, the preconditioner is only

Using a preconditioner M ~ A~!, we can transform the SO ARRTE o> :
given implicitly, requiring two triangular solves:

linear system into a system with a lower condition number:

MAx = Mb (left preconditioned) Zh+1 = Mrp4

H H oy M_lz =T
If we now apply the iterative solver to the preconditioned k+1 k+1

T Ar — N LUz k+1 = Tk+1
System M Ax = Mb, we usually get faster convergence.
=y
_ A1 . — _
AssumeM_A {then. a:—MAa:.—Mb. =Ly =14s1, Uzii1 =y
Solution right available, but computing

M = A~ tisexpensive...

117 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Test matrices

Matrix Origin SPD Num. Rows Nz Nz/Row
ANID 2D anisotropic diffusion yes 12,561 86,227 6.86
ANIG 2D anisotropic diffusion yes 50,721 349,603 6.89
ANIT 2D anisotropic diffusion yes 203,841 1,407,811 6.91
APACHEL Suite Sparse [10] yes 80,800 542,184 6.71
APACHE2 Suite Sparse yes 715,176 4,817,870 6.74
CAGE10 Suite Sparse no 11,397 150,645 13.22
CAGEL1 Suite Sparse no 39,082 559,722 14.32
JACOBIANMATO Fun3D fluid flow [20] no 90,708 5,047,017 55.64
JACOBIANMATY Fun3D fluid flow no 90,708 5,047,042 55.64
MAJORBASIS Suite Sparse no 160,000 1,750,416 10.94
TOPOPTO10 Geometry optimization [24] yes 132,300 8,802,544 66.53
TOPOPTO60 Geometry optimization yes 132,300 7,824,817 59.14
TOPOPT120 Geometry optimization yes 132,300 7,834,644 59.22
THERMALIL Suite Sparse yes 82,654 574,458 6.95
THERMAL?2 Suite Sparse yes 1,228,045 8,580,313 6.99
THERMOMECH_TC Suite Sparse yes 102,158 711,558 6.97
THERMOMECH_DM Suite Sparse yes 204,316 1,423,116 6.97
TMT_SYM Suite Sparse yes 726,713 5,080,961 6.99
TORSO2 Suite Sparse no 115,967 1,033,473 8.91
VENKATO1 Suite Sparse no 62,424 1,717,792 27.52

N10

118 Yoy @yig Anzt: RRfighpyy Desien i thg vt AR2t2PEAEUT - A Parallel Threshold ILU for GPUs

10/02/2019

Convergence: GMRES iterations

ParILUT
Matrix no prec. | ILU(0) | ILUT 0 1 2 3 4 5
ANIH 882 172 78 278 161 105 84 74 66
ANI6 1,751 391 127 547 315 211 168 143 131
ANI7 3,499 828 290 | 1,083 641 459 370 318 289
CAGEL0 20 8 8 9 7 8 8 8 8
CAGEL1 21 9 8 9 7 7 7 7 7
JACOBIANMATO 315 40 34 63 36 33 33 33 33
JACOBIANMAT9 539 66 65 110 60 55 54 53 53
MAJORBASIS 95 15 9 26 12 11 11 11 11
TOPOPTO10 2,399 565 303 835 492 375 348 340 339
TOPOPTO60 2,852 666 397 963 584 445 417 412 410
TOPOPT120 2,765 668 396 959 584 445 416 408 408
TORSO2 46 10 7 18 8 6 7 7 7
VENKATO1 195 22 17 42 18 17 17 17 17

119 Yo Qyig Anzt: Rgyfichpy Desien i thg vt AR2t2PEAEUT - A Parallel Threshold ILU for GPUs

N10

10/02/2019

Convergence: CG iterations

ParICT
Matrix no prec. | 1C(0) ICT 0 1 2 3 4 5
ANIH 951 226 - 297 184 136 108 93 86
ANIG 1,926 621 - 595 374 275 219 181 172
ANIT7 3,895 1,469 — | 1,199 753 559 455 405 377
APACHE] 3,727 368 331 | 1,480 933 517 321 323 323
APACHE2 4,574 1,150 785 | 1,890 1,197 799 766 760 754
THERMAL1 1,640 453 412 626 447 409 389 385 383
THERMAL?Z 6,253 1,729 | 1,604 | 2,372 1,674 1,503 1,457 1,472 1,433
THERMOMECH_DM 21 8 8 8 7 7 7 7 7
THERMOMECH_TC 21 8 7 8 7 7 7 7 7
TMT_SYM 5,481 1,453 | 1,185 | 1,963 1,234 1,071 1,012 992 1,004
TOPOPTO10 2,613 692 331 845 551 402 342 316 313
TOPOPTO60 3,123 871 — 988 749 693 1,116 — —
TOPOPT120 3,062 886 - 991 837 784 2,185 - —

120 4Q(yig Anzt: fegfighpy Designirihy Advic AF2t2PERPEIF - A Parallel Threshold ILU for GPUs Rleees

N10

Performance

Runtime of 5 ParILUT / ParICT steps and speedup over SuperLU ILUT".

ani7 2D Anisotropic Diffusion 203,841 1,407,811 10.48s 0.45s 23.34 0.30s 35.16
apache2 Suite Sparse Matrix Collect. 715,176 4,817,870 6.74 62.27 s 1.24 s 50.22 0.65s 95.37
cagell Suite Sparse Matrix Collect. 39,082 559,722 14.32 60.89s 0.54s 112.56 -
jacobianMat9 Fun3D Fluid Flow Problem 90,708 5,047,042 55.64 153.84s 7.26s 21.19 --
thermal2 Thermal Problem (Suite Sp.) 1,228,045 8,580,313 6.99 91.83s 1.23s 74.66 0.68s 134.25
tmt_sym Suite Sparse Matrix Collect. 726,713 5,080,961 6.97 53.42s 0.70s 76.21 0.41s 131.25
topopt120 Geometry Optimization 132,300 8,802,544 66.53 44,22 s 14.40s 3.07 8.24s 5.37
torso2 Suite Sparse Matrix Collect. 115,967 1,033,473 8.91 10.78s 0.27s 39.92 --
venkatO1 Suite Sparse Matrix Collect. 62,424 1,717,792 27.52 8.53s 0.74s 11.54 --
121 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

Precision distribution in Adaptive Block-Jacobi

09

0.8

0.5

Block distribution

04

0.2

122 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

B couble

single [2 I 20 I 14 I &7

10/02/2019

B covole I since I 2 I '20 I 14 I &7

Precision distribution in Adaptive Block-Jacobi

uonNqLIsIp %00ig

10/02/2019

Problem

123 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

. . . NVIDIA V100 GPU
Adaptive Block-Jacobi Generation

B (11, 52) N (8, 23) I (11, 20) N (5, 10) B (11, 4) I (8, 7) M auto (long) [auto (short)

450
400
350
300

250

GFlop/s

200

150

100

50

16 Block-size
124 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

NVIDIAV100 GPU

B (11, 52) N (8, 23) I (11, 20) N (5, 10) B (11, 4) I (8, 7) M auto (long) [auto (short)

450

Adaptive Block-Jacobi Generation

400

350

300

o o
Lo o
N N

s/dojl49

150

100

50

Block-size

30 31 32

29

28

27

1 2 3 4 5 6 7 8 9 10 11 12 13

10/02/2019

125 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

NVIDIAV100 GPU

Adaptive Block-Jacobi Application
B (11, 52) 8 (8, 23) I (11, 20) B (5,10) B (11, 4) M (8, 7) M auto (long) [auto (short)

400
350
300
250

200

GFlop/s

150

100

50

0!
16 Block-size

126 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing 10/02/2019

NVIDIAV100 GPU

Adaptive Block-Jacobi Application

B (11, 52) 8 (8, 23) I (11, 20) B (5,10) B (11, 4) M (8, 7) M auto (long) [auto (short)

400

350

300

250

o
o
9\

s/doj|49

150

100

50

Block-size

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

1

10/02/2019

127 Hartwig Anzt: Algorithm Designin the Advent of Exascale Computing

