

Algorithm Design in the Advent of Exascale Computing

4th International Symposium on Research and Education of Computational Science (RECS) University of Tokyo, October 2nd, 2019

<u>Hartwig Anzt</u>, Terry Cojean, Goran Flegar, Thomas Grűtzmacher, Pratik Nayak, Tobias Ribizel Steinbuch Centre for Computing (SCC)



Thomas P Grützmacher

Pratik Nayak

Tobias Ribizel

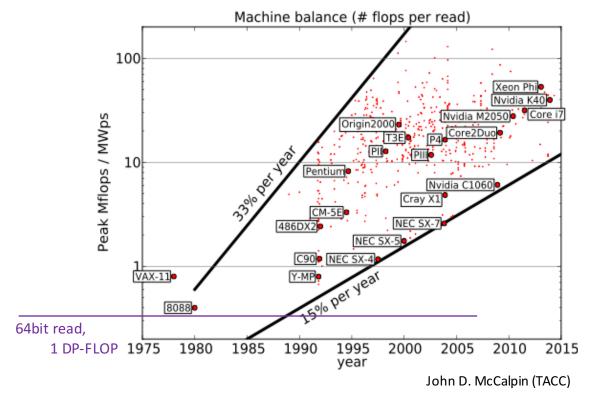
Mike Tsai

- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL

- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18) for 16 bit floating point used in data analytics and artificial intelligence

Copyright@ORNL

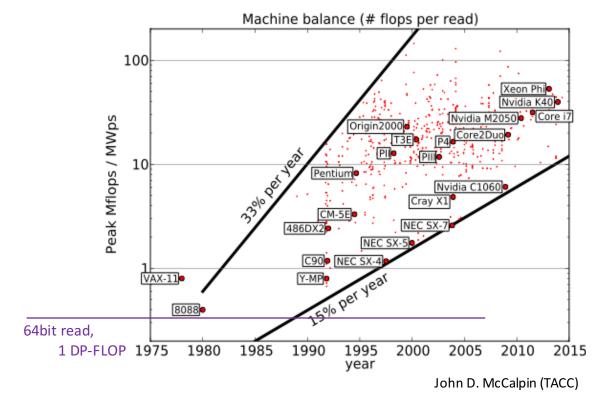


1. Compute power (#FLOPs) grows much faster than bandwidth.

"Operations are free, mem access and comm is what counts."

- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL

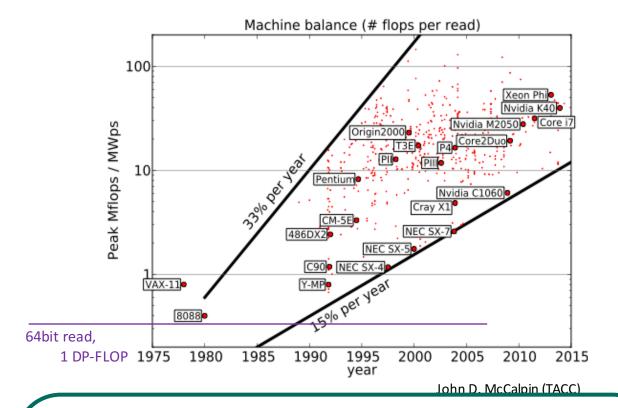


Compute power (#FLOPs) grows much faster than bandwidth.
 "Operations are free, mem access and comm is what counts."

. Manycore architectures need new algorithmic approaches. "Sync-Free fine-grained parallelism needed."

- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL



Compute power (#FLOPs) grows much faster than bandwidth.
 "Operations are free, mem access and comm is what counts."

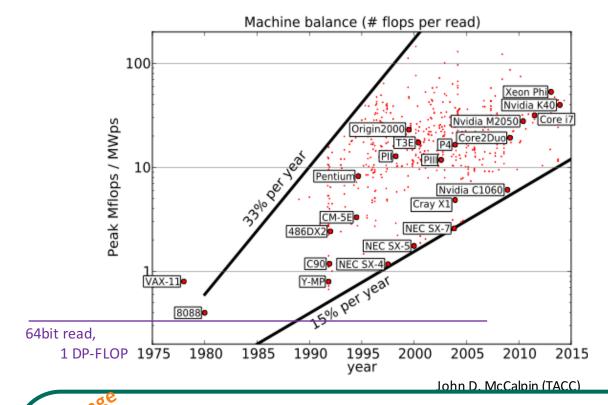
2. Manycore architectures need new algorithmic approaches. "Sync-Free fine-grained parallelism needed."

Software lives longer than hardware.

"We need a paradigm change to embrace software development."

- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL



1, alcompute power (#FLOPs) grows much faster than bandwidth.

"Operations are free, mem access and comm is what counts."

2 Manycore architectures need new algorithmic approaches.

"Sync-Free fine-grained parallelism needed."

3,1000ftware lives longer than hardware.

"We need a paradigm change to embrace software development."

- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL

- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL

Roofline Model

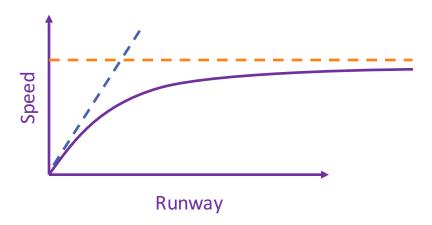
Given certain hardware characteristics:

memory bandwidth, arithmetic power,

Acceleration Top Speed

the performance of any operation is

- either bound by the data access/communication (*memory bound*),
- or by the arithmetic operations (compute bound).



- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL

Roofline Model

Given certain hardware characteristics:

memory bandwidth, arithmetic power,

Acceleration
Top Speed

the performance of any operation is

- either bound by the data access/communication (*memory bound*),
- or by the arithmetic operations (compute bound).

Matrix-Matrix Product (GEMM): $C = A \times B$

 $A, B, C \in \mathbb{R}^{n \times n}$

 $3n^2$ Memory operations

 $2n^3$ Arithmetic operations

We just need to increase the size, and at some point the operation becomes compute bound.

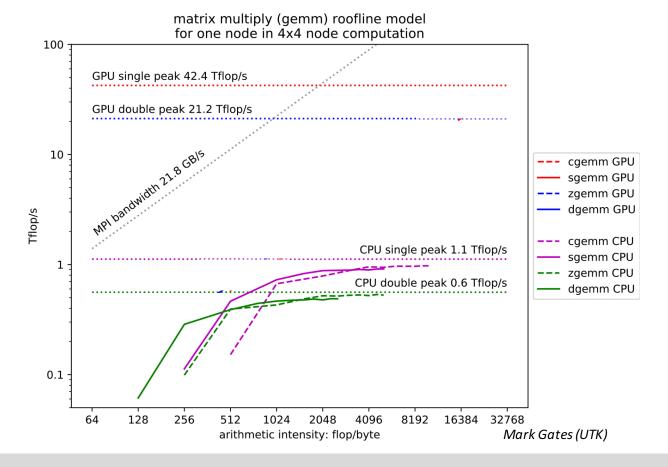
"we infinitely extend the acceleration runway"

- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL

Dense Matrix Operations?

- The inter-node communication is the limiting resource;
- Each node has more computational power than what we can leverage;

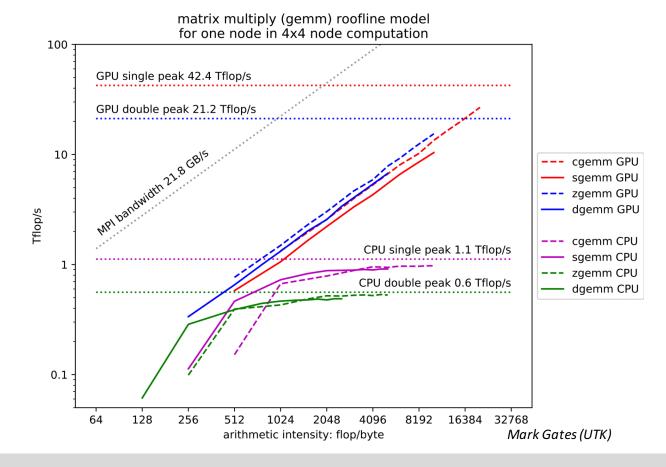


- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL

Dense Matrix Operations?

- The inter-node communication is the limiting resource;
- Each node has more computational power than what we can leverage;



- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL

Dense Matrix Operations?

- The inter-node communication is the limiting resource;
- Each node has more computational power than what we can leverage;

Sparse / Graph Problems?

• Sparse Matrix Vector Product (SpMV) is a central building block;

- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of 200 Pflop/s for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18)
 for 16 bit floating point used in data
 analytics and artificial intelligence

Copyright@ORNL

Dense Matrix Operations?

- The inter-node communication is the limiting resource;
- Each node has more computational power than what we can leverage;

Sparse / Graph Problems?

- Sparse Matrix Vector Product (SpMV) is a central building block;
- For many of the problems in the SuiteSparse Matrix Collection¹,
 a Multi-node SpMV is slower than a Single-node SpMV;
- The inter-node communication is an order of magnitude slower than the local computations.

¹SuiteSparse Matrix Collection: https://sparse.tamu.edu/

- Node: 2 IBM POWER9 + 6 NVIDIA V100 GPUs
- 4,608 nodes, 9,216 IBM Power9 CPUs
- 27,648 V100 GPUs (8 TFLOPs / GPU)
- Peak performance of **200 Pflop/s** for modeling & simulation
- Peak performance of 3.3 Eflop/s (10^18) for 16 bit floating point used in data analytics and artificial intelligence

Dense Matrix Operations?

- In is the limiting resource; The inter-node comp
- Each node has m putational power than what we can leverage;

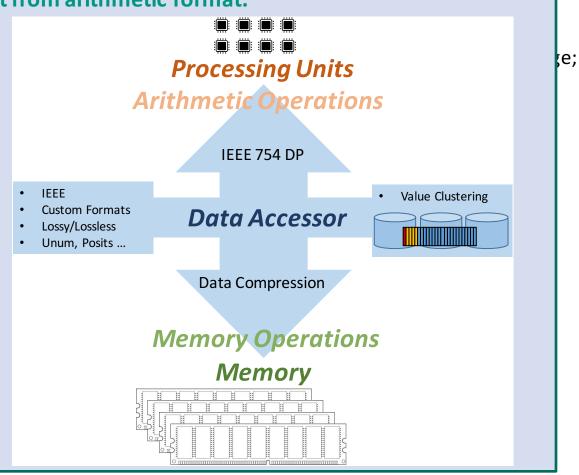
Sparse / Gr

- X Vector Product (SpMV) is a central building block;
- *format from y of the problems in the SuiteSparse Matrix Collection¹, ulti-node SpMV is slower than a Single-node SpMV;
 - The inter-node communication is an order of magnitude slower than the local computations.

¹SuiteSparse Matrix Collection: https://sparse.tamu.edu/

Radically decouple storage format from arithmetic format.

- The arithmetic operations should use high precision formats natively supported by hardware.
- Data access should be as cheap as possible, reduced precision.
- Consider a wide range of memory formats:
 - IEEE standard precision formats
 - Customized formats (configuring mantissa/exponent)
 - Lossy compression
 - ..



Copyright@ORNL

¹SuiteSparse Matrix Collection: https://sparse.tamu.edu/

Spotlight Example: Use reduced precision for "approximate Operators"

- Solve sparse linear systemAx = b
- Preconditioners for iterative solvers.
 - Idea: Approximate inverse of system matrix to make the system "easier to solve": $P^{-1} \approx A^{-1}$ $\tilde{A} = P^{-1}A$, $\tilde{b} = P^{-1}b$, and we solve $Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$.

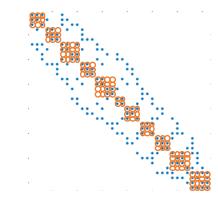
Spotlight Example: Use reduced precision for "approximate Operators"

- Solve sparse linear systemAx = b
- Preconditioners for iterative solvers.
 - Idea: Approximate inverse of system matrix to make the system "easier to solve": $P^{-1} \approx A^{-1}$ $\tilde{A} = P^{-1}A$, $\tilde{b} = P^{-1}b$, and we solve $Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$.
- Why should we store the preconditioner matrix P^{-1} in full (high) precision?
 - We have to ensure regularity! (Reducing precision can turn matrix singular)

Spotlight Example: Use reduced precision for "approximate Operators"

- Solve sparse linear systemAx=b
- Preconditioners for iterative solvers.
 - Idea: Approximate inverse of system matrix to make the system "easier to solve": $P^{-1} \approx A^{-1}$ $\tilde{A} = P^{-1}A$, $\tilde{b} = P^{-1}b$, and we solve $Ax = b \Leftrightarrow \tilde{A}x = \tilde{b}$.
- Why should we store the preconditioner matrix P^{-1} in full (high) precision?
 - We have to ensure regularity! (Reducing precision can turn matrix singular)
- Jacobi method based on diagonal scaling $\,P = diag(A)\,$
- ullet Block-Jacobi is based on block-diagonal scaling: $P=diag_B(A)$
 - Large set of small diagonal blocks.
 - Each block corresponds to one (small) linear system.
 - Larger blocks typically improve convergence.
 - Larger blocks make block-Jacobi more expensive.

Extreme case: one block of matrix size.



https://science.nasa.gov/earth-science/focus-areas/earth-weathe

Spotlight Example: Block-Jacobi Preconditioning

Preconditioner Setup:

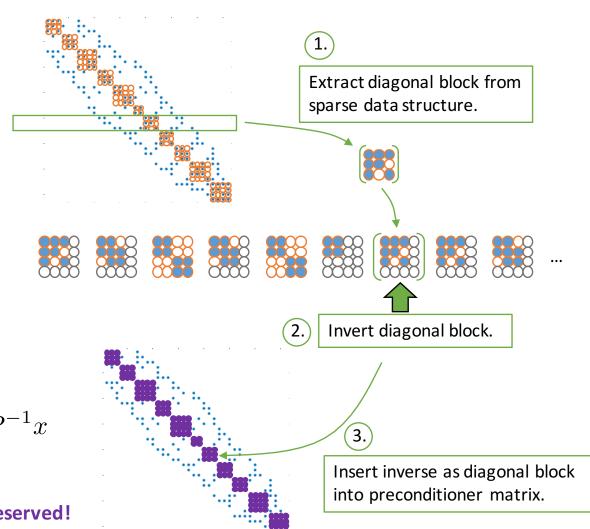
- Identify the diagonal blocks $P=diag_B(A)$
- Form the block-Inverse $P^{-1} \approx A^{-1}$

Preconditioner Application:

• Apply the preconditioner in every solver iteration via:

$$y := P^{-1}x$$

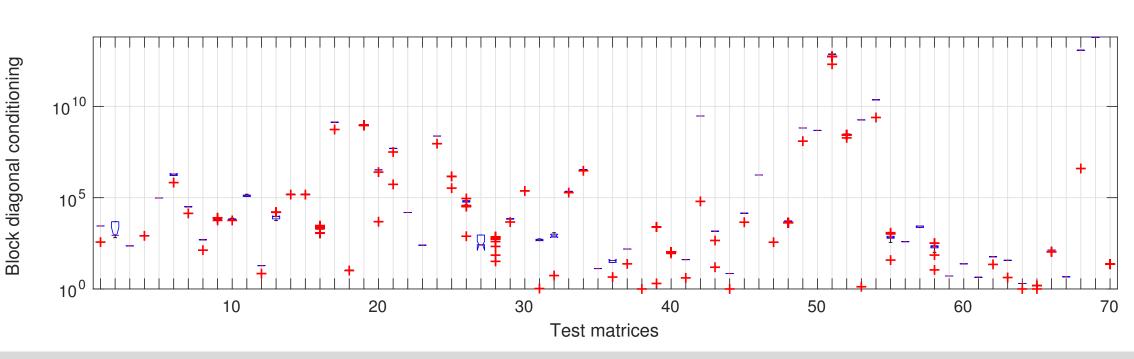
We can store diagonal blocks in lower precision, if regularity is preserved!



∇alue Range + Median

Outlier

- 70 matrices from the SuiteSparse Matrix Collection
- Use block-size 24 with Super-Variable agglomeration (24 is upper bound for size of blocks)
- Report conditioning of all arising diagonal blocks

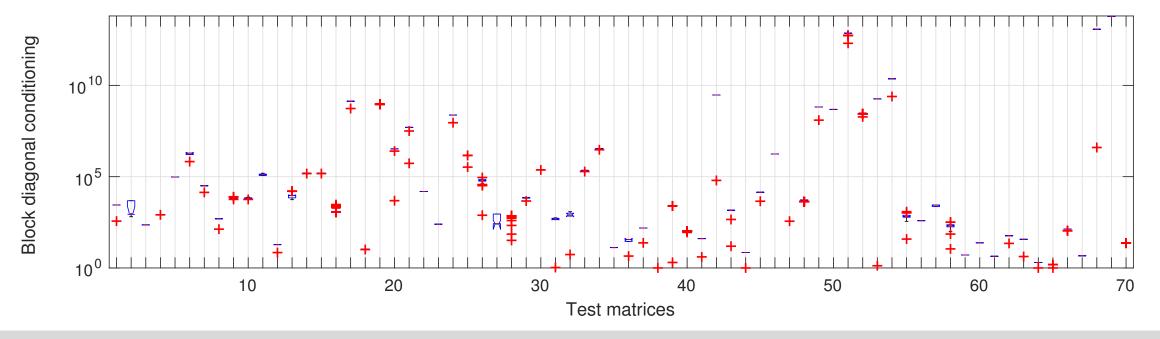


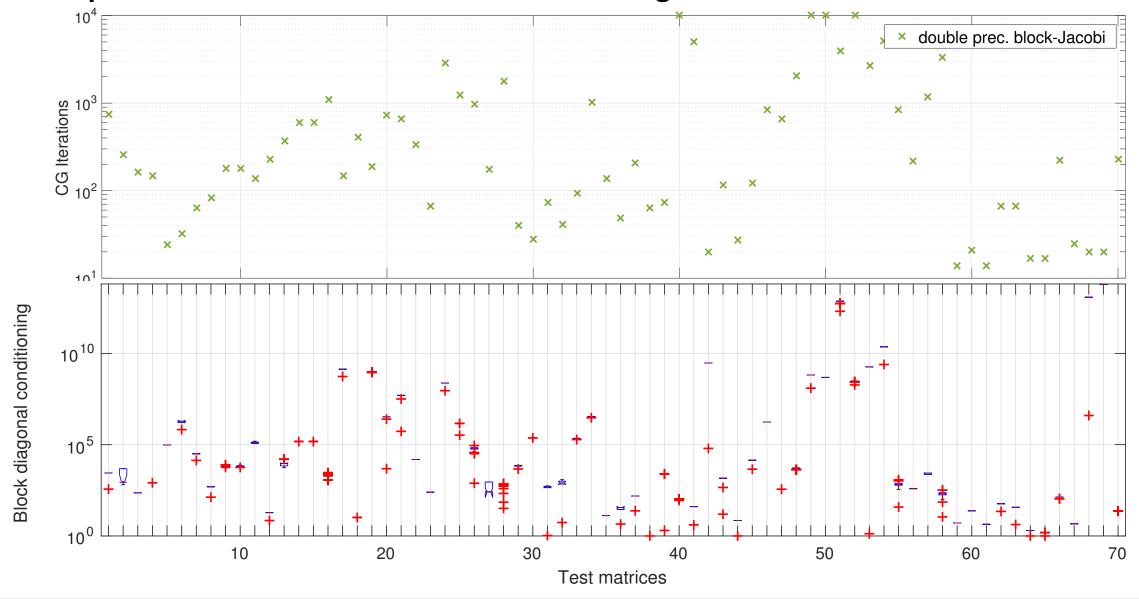
√ Value Range + Median

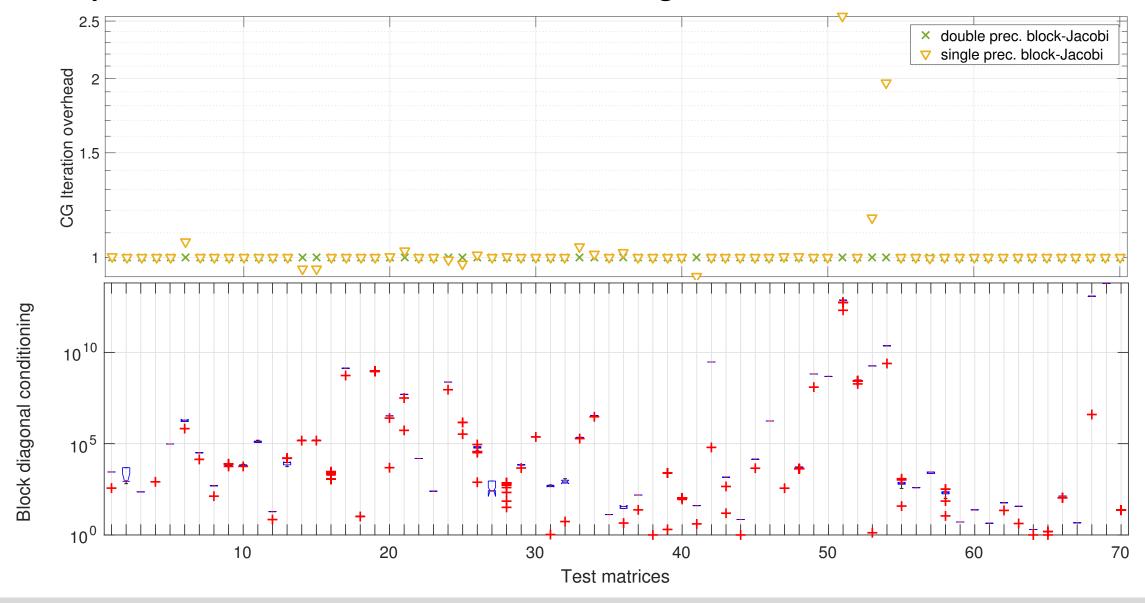
- 70 matrices from the SuiteSparse Matrix Collection
- Use block-size 24 with Super-Variable agglomeration (24 is upper bound for size of blocks)

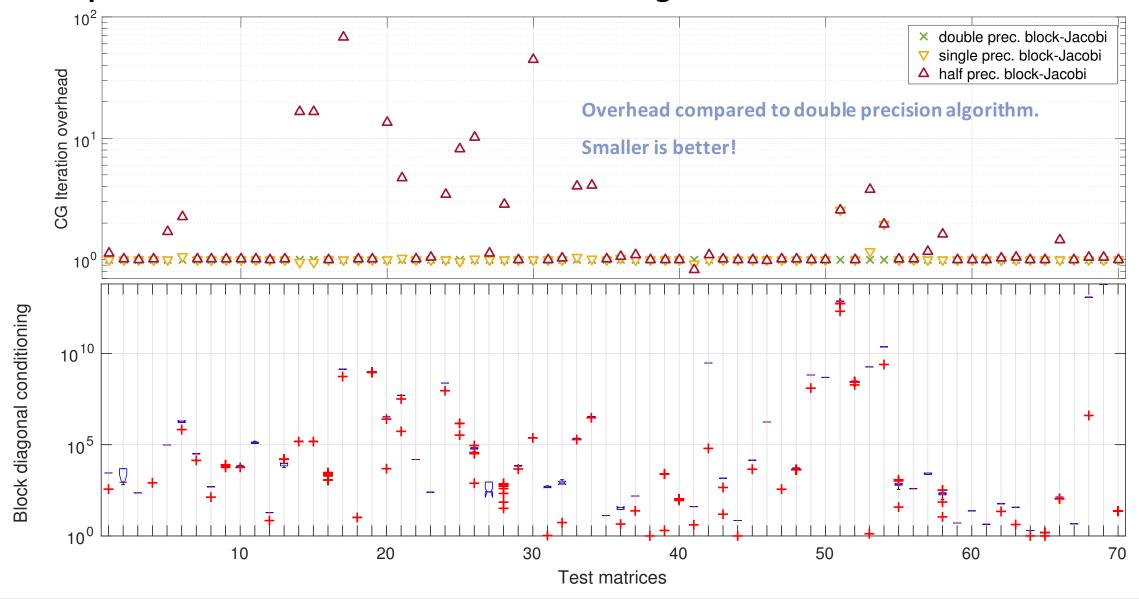
+ Outlier

- Report conditioning of all arising diagonal blocks
- Analyze the impact of storing block-Jacobi in lower precision a top-level Conjugate Gradient solver (CG)



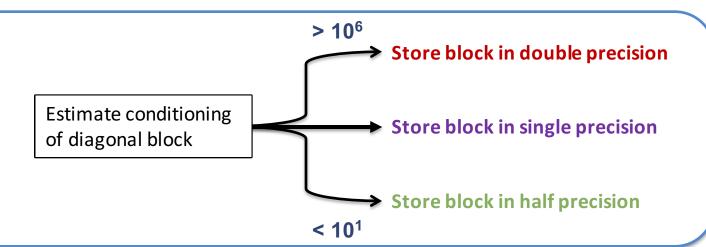


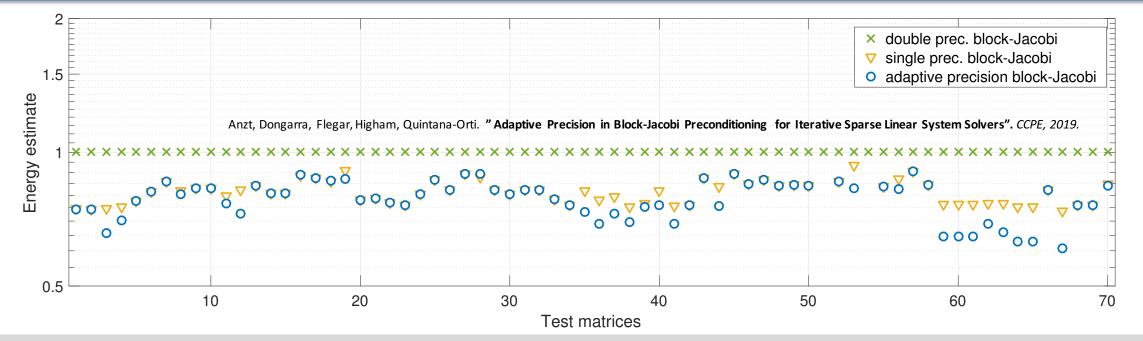




Multi-Precision Idea:

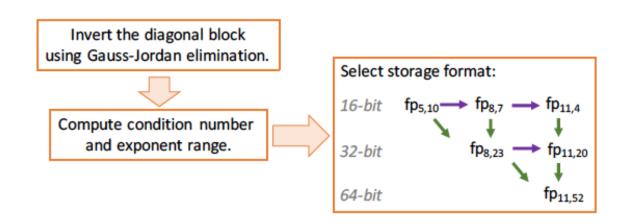
- All computations use double precision!
- Store distinct blocks in different formats
- Use single precision as standard storage format
- Where necessary: switch to double
- For well-conditioned blocks use half precision





Multi-Precision Idea:

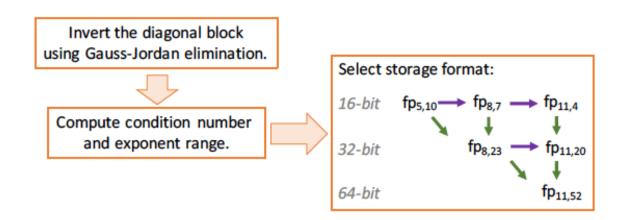
- All computations use double precision!
- Depart from the rigid IEEE precision formats!
- Preserve either 1 or 2 digits accuracy of the inverted diagonal blocks.



Flegar, Anzt, Quintana-Orti. "Customized-Precision Block-Jacobi Preconditioning for Krylov Iterative Solvers on Data-Parallel Manycore Processors". TOMS, submitted.

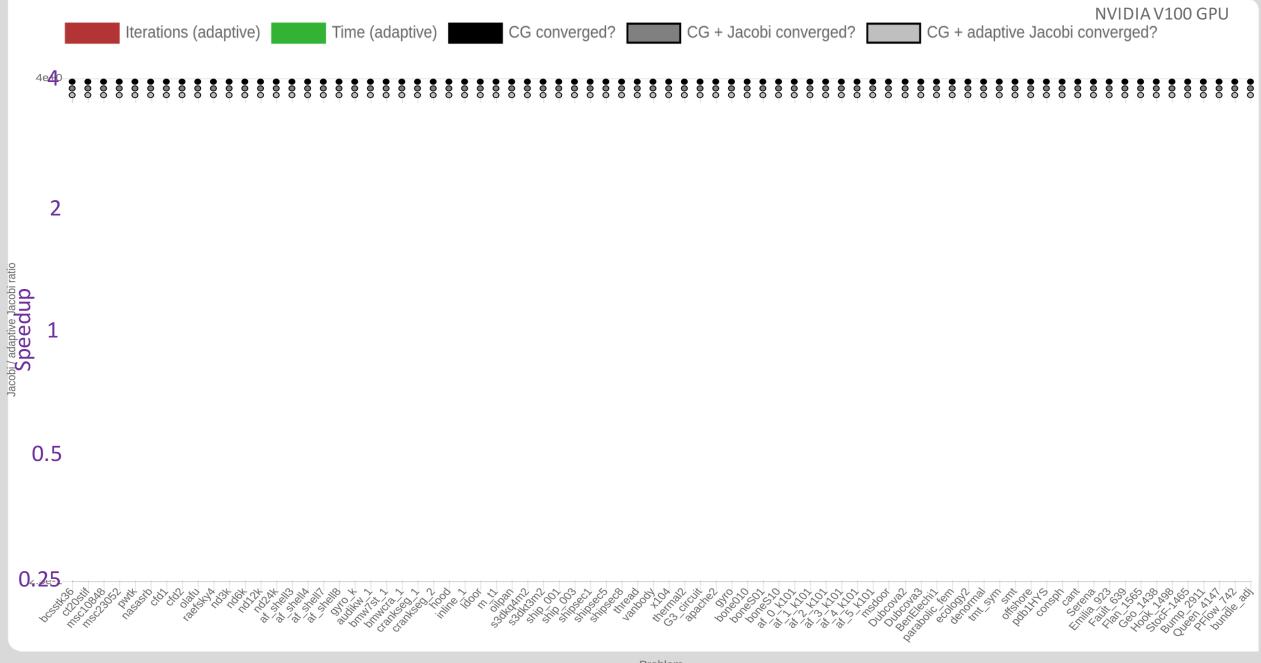
Multi-Precision Idea:

- All computations use double precision!
- Depart from the rigid IEEE precision formats!
- Preserve either 1 or 2 digits accuracy of the inverted diagonal blocks.

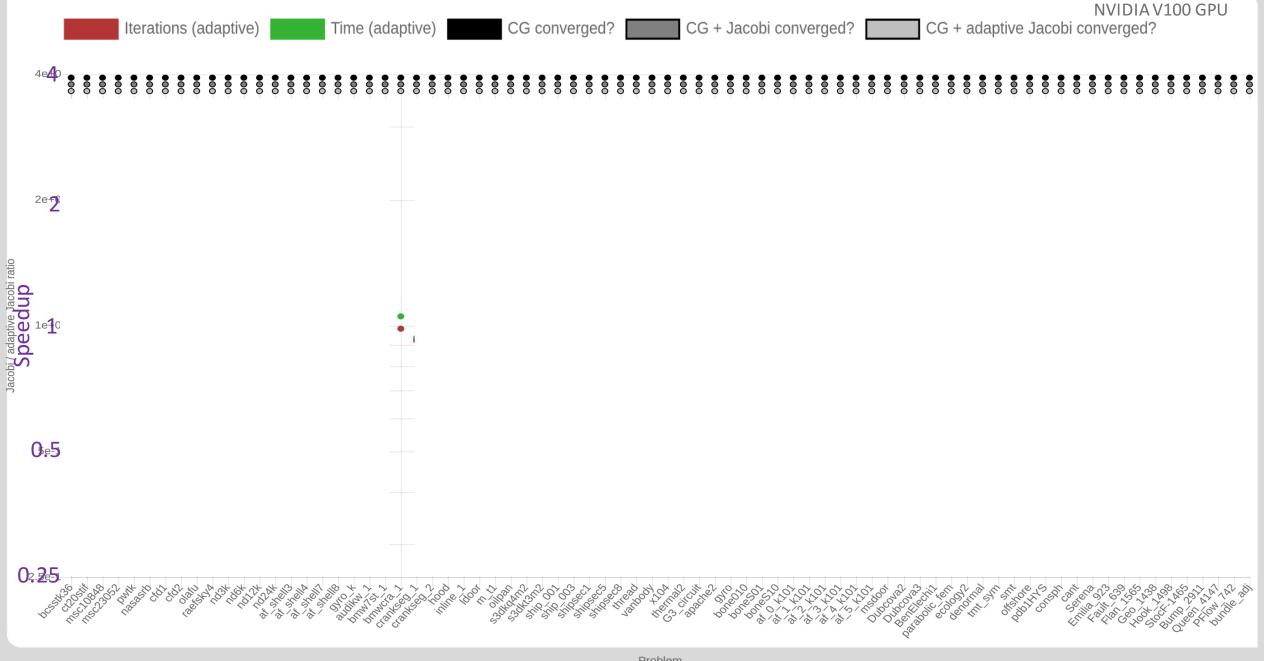


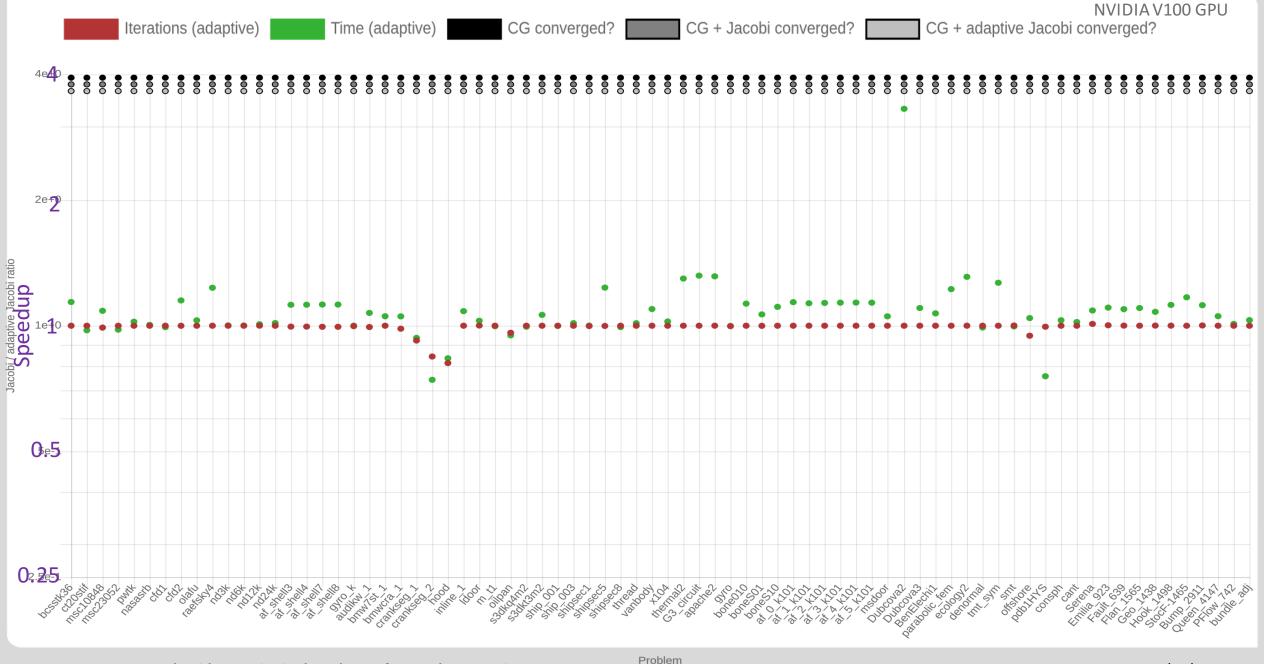
- Regularity preserved;
- ✓ No flexible Krylov solver needed
 (Preconditioner constant operator);
- ✓ Can handle non-spd problems (inversion features pivoting);
- ✓ Preconditioner for any iterative preconditionable solver;

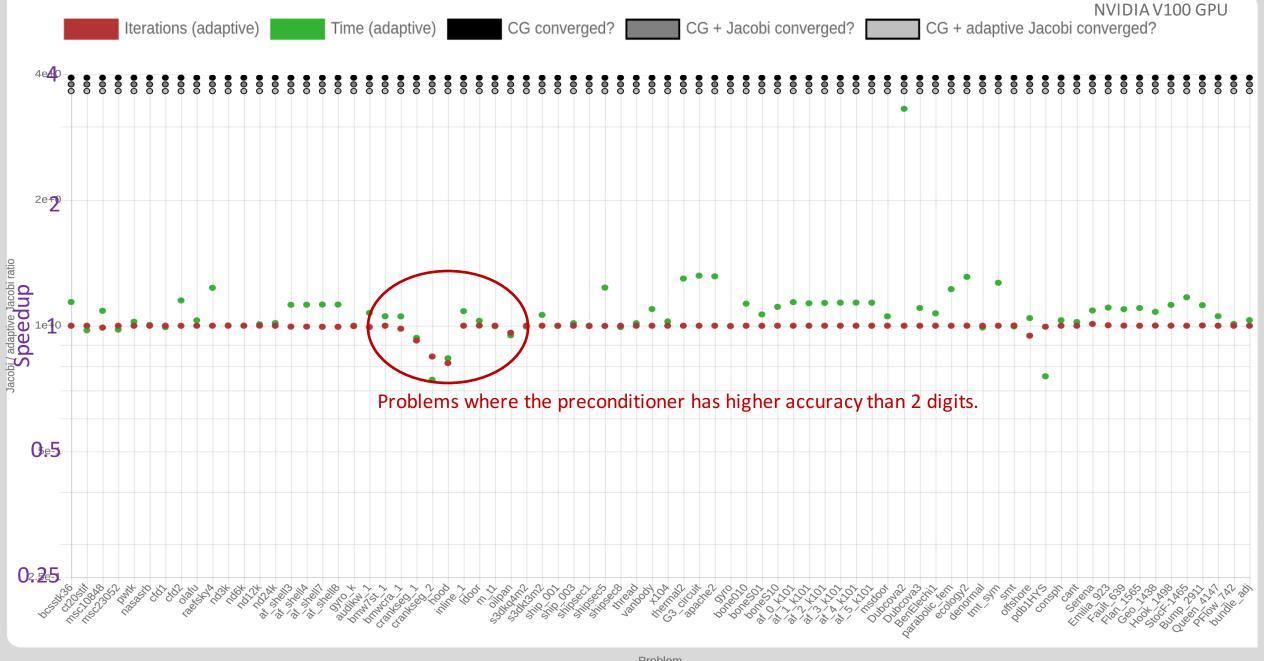
- Overhead of the precision detection (condition number calculation);
- Overhead from storing precision information
 (need to additionally store/retrieve flag);
- Speedups / preconditioner quality problem-dependent;

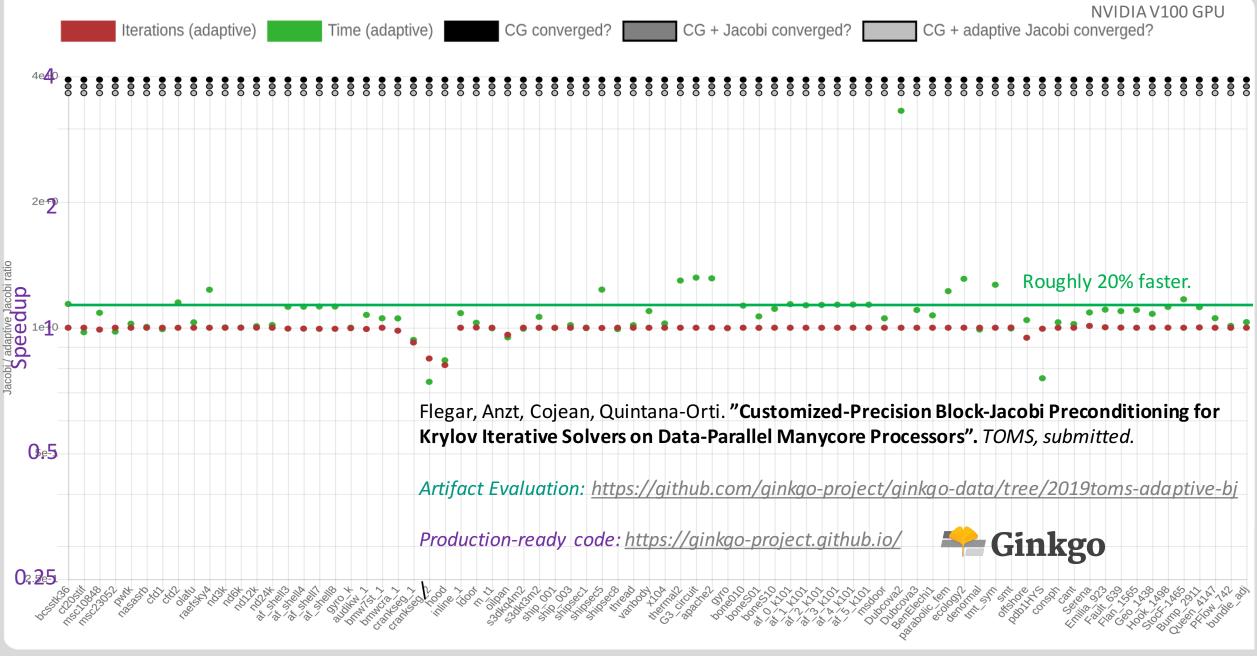


28



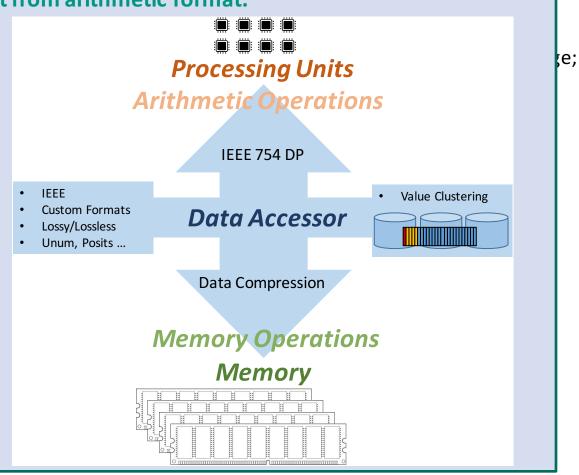






Radically decouple storage format from arithmetic format.

- The arithmetic operations should use high precision formats natively supported by hardware.
- Data access should be as cheap as possible, reduced precision.
- Consider a wide range of memory formats:
 - IEEE standard precision formats
 - Customized formats (configuring mantissa/exponent)
 - Lossy compression
 - ..



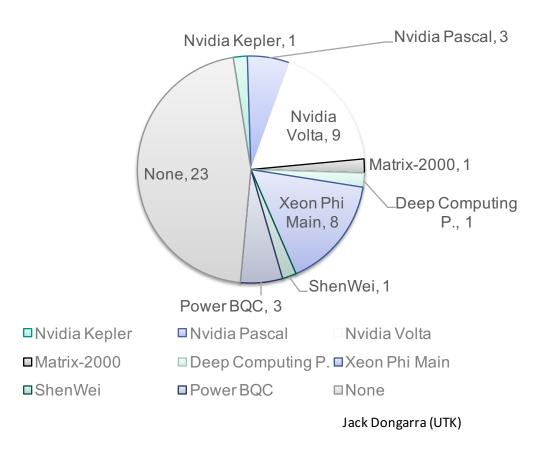
Copyright@ORNL

¹SuiteSparse Matrix Collection: https://sparse.tamu.edu/

How to deal with the Manycore Parallelism?

- Increasing adoption of manycore accelerators
 - -- partly motivated by the Machine Learning excitement;
- Integration of low-precision tensor units;
- The GPU streaming model is dominating;
- Algorithms need fine-grained parallelism
 - -- thousands of SIMT threads!
- Global synchronizations are killing performance;
- Runtime scheduling of thread blocks virtually impossible;
- Memory access pattern central (coalesced data access);
- Asynchronous algorithms needed;
- Reformulation as fixed-point iteration;

Accelerator share in the TOP50 systems [Jun 2019]



Spotlight Example: Incomplete Sparse Factorizations

We are looking for a factorization-based preconditioner such that $A \approx L \cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U) = nnz(A)).

Spotlight Example: Incomplete Sparse Factorizations

We are looking for a factorization-based preconditioner such that $A \approx L \cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U) = nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

$$\mathcal{S}(A) = \{(i,j) \in \mathbb{N}^2 : A_{ij} \neq 0\}$$

We are looking for a factorization-based preconditioner such that $A\approx L\cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U)=nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization

- Decompose system matrix into product $A = L \cdot U$.
- Based on Gaussian elimination.
- Triangular solves to solve a system Ax = b:

$$Ly = b \Rightarrow y \qquad \Rightarrow \qquad Ux = y \Rightarrow x$$

- De-Facto standard for solving dense problems.
- What about sparse? Often significant fill-in...

$$S(A) = \{(i, j) \in \mathbb{N}^2 : A_{ij} \neq 0\}$$

We are looking for a factorization-based preconditioner such that $A\approx L\cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U)=nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

()	×	×	×	×		×	×		\
)	×	X	×						
)	×	X	×	×					
)	×		×	×	×	×			×
İ				×	×	×		×	×
)	×			×	×	\times	\times	\times	
)	×					×	\times		
					×	×		\times	X
				×	×			×	×

Exact LU Factorization

- Decompose system matrix into product $A = L \cdot U$.
- Based on Gaussian elimination.
- Triangular solves to solve a system Ax = b:

$$Ly = b \Rightarrow y \qquad \Rightarrow \qquad Ux = y \Rightarrow x$$

- De-Facto standard for solving dense problems.
- What about sparse? Often significant fill-in...

Incomplete LU Factorization (ILU)

 Focused on restricting fill-in to a specific sparsity pattern S.

We are looking for a factorization-based preconditioner such that $A\approx L\cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U)=nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization

- Decompose system matrix into product $A = L \cdot U$.
- Based on Gaussian elimination.
- Triangular solves to solve a system Ax = b:

$$Ly = b \Rightarrow y \qquad \Rightarrow \qquad Ux = y \Rightarrow x$$

- De-Facto standard for solving dense problems.
- What about sparse? Often significant fill-in...

Incomplete LU Factorization (ILU)

- Focused on restricting fill-in to a specific sparsity pattern S.
- For ILU(0), S is the sparsity pattern of A.
 - Works well for many problems.
 - Is this the best we can get for nonzero count?

We are looking for a factorization-based preconditioner such that $A\approx L\cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U)=nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization

- Decompose system matrix into product $A = L \cdot U$.
- Based on Gaussian elimination.
- Triangular solves to solve a system Ax = b:

$$Ly = b \Rightarrow y \qquad \Rightarrow \qquad Ux = y \Rightarrow x$$

- De-Facto standard for solving dense problems.
- What about sparse? Often significant fill-in...

Incomplete LU Factorization (ILU)

- Focused on restricting fill-in to a specific sparsity pattern S.
- For ILU(0), S is the sparsity pattern of A.
 - Works well for many problems.
 - Is this the best we can get for nonzero count?
- Fill-in in threshold ILU (ILUT) bases S on the significance of elements (e.g. magnitude).
 - Often better preconditioners than level-based ILU.
 - Difficult to parallelize.

We are looking for a factorization-based preconditioner such that $A\approx L\cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U)=nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Rethink the overall strategy!

- Use a parallel iterative process to generate factors.
- The preconditioner should have a moderate number of nonzero elements, but we don't care too much about intermediate data.

We are looking for a factorization-based preconditioner such that $A\approx L\cdot U$. is a good approximation with moderate nonzero count (e.g. nnz(L+U)=nnz(A)).

- Where should these nonzero elements be located?
- How can we compute the preconditioner in a highly parallel fashion?

Rethink the overall strategy!

- Use a parallel iterative process to generate factors.
- The preconditioner should have a moderate number of nonzero elements, but we don't care too much about intermediate data.
 - 1. Select a set of nonzero locations.
 - 2. Compute values in those locations such that $Approx L\cdot U$ is a "good" approximation.
 - 3. Maybe change some locations in favor of locations that result in a better preconditioner.
 - 4. Repeat until the preconditioner quality does no longer improve for the nonzero count.

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem...

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A pprox L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem...

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem...

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem...

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem...

- Select a set of nonzero locations.
- 2. Compute values in those locations such that $Approx L\cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A-L\cdot U)$ equations and nnz(L+U) variables.

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A-L\cdot U)$ equations and nnz(L+U) variables.
- We may want to compute the values in L,U such that $R=A-L\cdot U=0|_{\mathcal{S}}$, the approximation being exact in the locations included in \mathcal{S} , but not outside!

$$nnz(L+U)$$
 equations $nnz(L+U)$ variables

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A-L\cdot U)$ equations and nnz(L+U) variables.
- We may want to compute the values in L, U such that $R = A L \cdot U = 0|_{\mathcal{S}}$, the approximation being exact in the locations included in \mathcal{S} , but not outside!
- This is the underlying idea of Edmond Chow's parallel ILU algorithm¹:

$$L \cdot U = A|_{\mathcal{S}} \quad \Rightarrow \quad F(l_{ij}, u_{ij}) = \begin{cases} \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right), & i > j \\ a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, & i \leq j \end{cases}$$

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A pprox L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A-L\cdot U)$ equations and nnz(L+U) variables.
- We may want to compute the values in L, U such that $R = A L \cdot U = 0|_{\mathcal{S}}$, the approximation being exact in the locations included in \mathcal{S} , but not outside!
- This is the underlying idea of Edmond Chow's parallel ILU algorithm¹:

$$L \cdot U = A|_{\mathcal{S}} \quad \Rightarrow \quad F(l_{ij}, u_{ij}) = \begin{cases} \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right), & i > j \\ a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, & i \leq j \end{cases}$$

• Converges in the asymptotic sense towards incomplete factors L,U such that $R=A-L\cdot U=0|_{\mathcal{S}}$

¹Chow and Patel. "Fine-grained Parallel Incomplete LU Factorization". In: SIAM J. on Sci. Comp. (2015).

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A pprox L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A-L\cdot U)$ equations and nnz(L+U) variables.
- We may want to compute the values in L,U such that $R=A-L\cdot U=0|_{\mathcal{S}}$, the approximation being exact in the locations included in \mathcal{S} , but not outside!
- This is the underlying idea of Edmond Chow's parallel ILU algorithm¹:

$$L \cdot U = A|_{\mathcal{S}} \quad \Rightarrow \quad F(l_{ij}, u_{ij}) = \begin{cases} \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right), & i > j \\ a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, & i \leq j \end{cases}$$

• Converges in the asymptotic sense towards incomplete factors L,U such that $R=A-L\cdot U=0|_{\mathcal{S}}$

ParILU Algorithm

- Fixed-Point based algorithm for computing ILU;
- Fine-grained parallelism and asynchronous execution;
- Faster than Level-Scheduling
- Outperforms NVIDIA's cuSPARSE ILU

Matrix	NVIDIA	ParILU	Speedup
(UFMC)	$\mathbf{cuSPARSE}$		
APA	61. ms	$8.8~\mathrm{ms}$	6.9
ECO	$107.\mathrm{ms}$	$6.7~\mathrm{ms}$	16.0
G3	110. ms	$12.1~\mathrm{ms}$	9.1
OFF	$219. \mathrm{ms}$	$25.1~\mathrm{ms}$	8.7
PAR	$131. \mathrm{ms}$	$6.1 \mathrm{ms}$	21.6
THM	$454. \mathrm{ms}$	$15.7 \mathrm{ms}$	28.9
L2D	$112. \mathrm{ms}$	$7.4~\mathrm{ms}$	$\bf 15.2$
L3D	94. ms	$47.5~\mathrm{ms}$	2.0

Chow, Anzt, Dongarra, ISC 2015

¹Chow and Patel. "Fine-grained Parallel Incomplete LU Factorization". In: SIAM J. on Sci. Comp. (2015).

- Select a set of nonzero locations.
- 2. Compute values in those locations such that $A pprox L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.
- This is an optimization problem with $nnz(A-L\cdot U)$ equations and nnz(L+U) variables.
- We may want to compute the values in L, U such that $R = A L \cdot U = 0|_{\mathcal{S}}$, the approximation being exact in the locations included in \mathcal{S} , but not outside!
- This is the underlying idea of Edmond Chow's parallel ILU algorithm¹:

$$L \cdot U = A|_{\mathcal{S}} \quad \Rightarrow \quad F(l_{ij}, u_{ij}) = \begin{cases} \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right), & i > j \\ a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, & i \leq j \end{cases}$$

We may not need high accuracy here,
 because we may change the pattern again... One single fixed-point sweep.

Fixed-point sweep approximates incomplete factors.

¹Chow and Patel. "Fine-grained Parallel Incomplete LU Factorization". In: SIAM J. on Sci. Comp. (2015).

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.

Compute ILU residual & check convergence.

Maybe use the ILU residual norm as quality metric.

ILU residual
$$R=$$

Ì

II

Fixed-point sweep approximates incomplete factors.

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A pprox L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.

Compute ILU residual & check convergence.

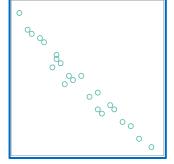
• The sparsity pattern of A might be a good initial start for nonzero locations.

Fixed-point sweep approximates incomplete factors.

- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A \approx L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.

Identify locations with nonzero ILU residual.

Compute ILU residual & check convergence.



- The sparsity pattern of A might be a good initial start for nonzero locations.
- Then, the approximation will be exact for all locations $S_0 = S(L_0 + U_0)$ and nonzero in locations $S_1 = (S(A) \cup S(L_0 \cdot U_0)) \setminus S(L_0 + U_0)^1$.

Fixed-point sweep approximates incomplete factors.

¹Saad. "Iterative Methods for Sparse Linear Systems, 2nd Edition". (2003).

- Select a set of nonzero locations.
- Compute values in those locations such that $A pprox L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- Repeat until the preconditioner quality stagnates.

Adding all these locations (level-fill!) might be good idea...

The sparsity pattern of A might be a good initial start for nonzero locations.

Then, the approximation will be exact for all locations $\mathcal{S}_0 = \mathcal{S}(L_0 + U_0)$ and nonzero in locations $S_1 = (S(A) \cup S(L_0 \cdot U_0)) \setminus S(L_0 + U_0)^1$.

Identify locations with nonzero ILU residual.

> Compute ILU residual & check convergence.

Add locations to sparsity pattern of incomplete factors.

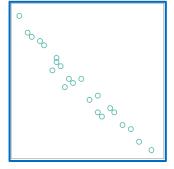
Fixed-point sweep approximates incomplete factors.



- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A pprox L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.

Identify locations with nonzero ILU residual.

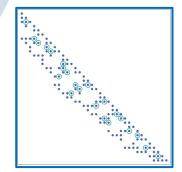
Compute ILU residual & check convergence.



- The sparsity pattern of A might be a good initial start for nonzero locations.
- Then, the approximation will be exact for all locations $S_0 = S(L_0 + U_0)$ and nonzero in locations $S_1 = (S(A) \cup S(L_0 \cdot U_0)) \setminus S(L_0 + U_0)^1$.
- Adding all these locations (level-fill!) might be good idea, but adding these will again generate new nonzero residuals $\mathcal{S}_2 = (\mathcal{S}(A) \cup \mathcal{S}(L_1 \cdot U_1)) \setminus \mathcal{S}(L_1 + U_1)$

Add locations to sparsity pattern of incomplete factors.

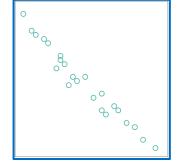
Fixed-point sweep approximates incomplete factors.



- 1. Select a set of nonzero locations.
- 2. Compute values in those locations such that $A pprox L \cdot U$ is a "good" approximation.
- 3. Maybe change some locations in favor of locations that result in a better preconditioner.
- 4. Repeat until the preconditioner quality stagnates.

Identify locations with nonzero ILU residual.

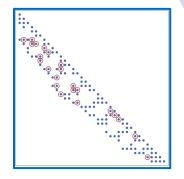
Compute ILU residual & check convergence.



• At some point we should remove some locations again, e.g. the smallest elements, and start over looking at locations $R=A-L_k\cdot U_k$...

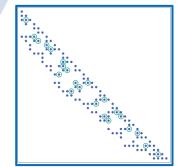
Remove smallest elements from incomplete factors.

Add locations to sparsity pattern of incomplete factors.

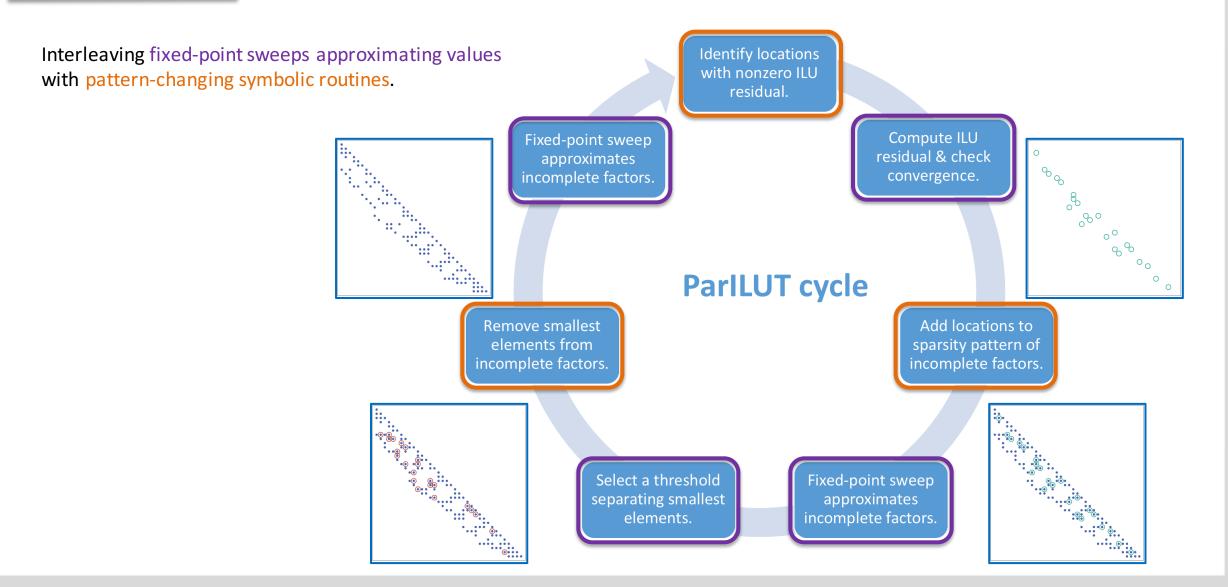


Select a threshold separating smallest elements.

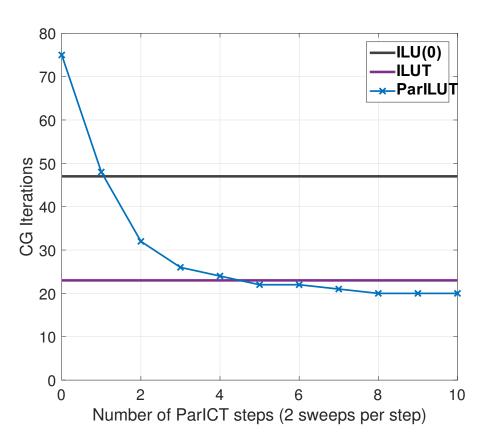
Fixed-point sweep approximates incomplete factors.



ParILUT Algorithm



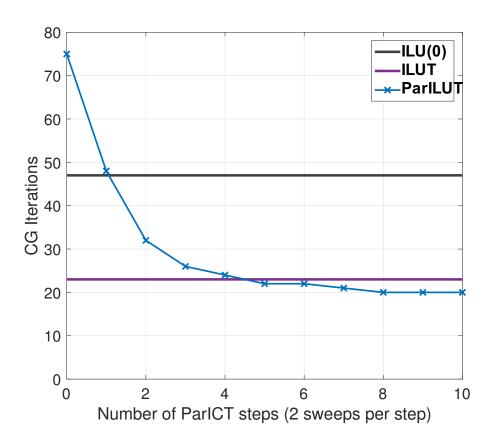
ParILUT Quality



- Top-level solver iterations as quality metric.
- Few sweeps give a "better" preconditioner than ILU(0).
- Better than conventional ILUT?

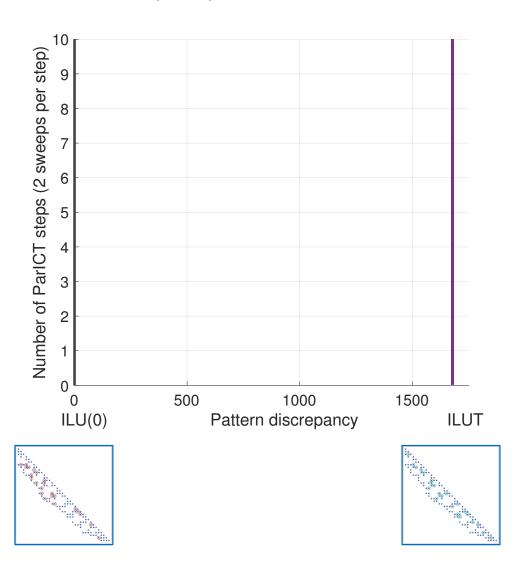
Anisotropic diffusion problem n: 741, nz: 4,951

ParILUT Quality

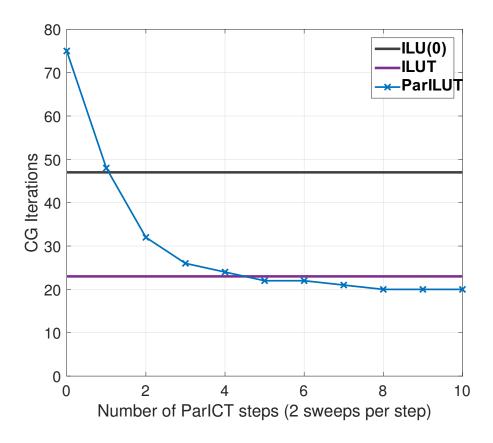


- Top-level solver iterations as quality metric.
- Few sweeps give a "better" preconditioner than ILU(0).
- Better than conventional ILUT?

Anisotropic diffusion problem n: 741, nz: 4,951

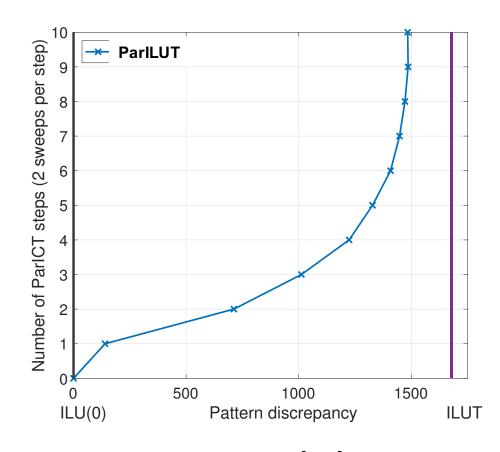


ParILUT Quality



- Top-level solver iterations as quality metric.
- Few sweeps give a "better" preconditioner than ILU(0).
- Better than conventional ILUT?

Anisotropic diffusion problem n: 741, nz: 4,951

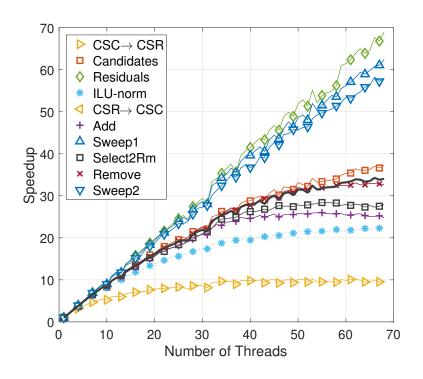


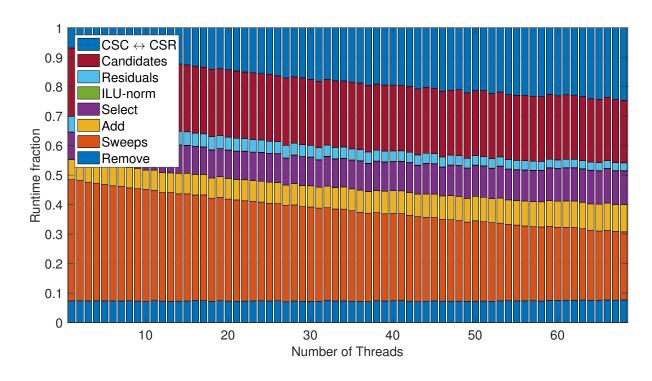
- Pattern converges after few sweeps.
- Pattern "more like" ILUT than ILU(0).

ParILUT Scalability

thermal 2 matrix from SuiteSparse, RCM ordering, 8 el/row.

Intel Xeon Phi 7250 "Knights Landing" 68 cores @1.40 GHz, 16GB MCDRAM @490 GB/s



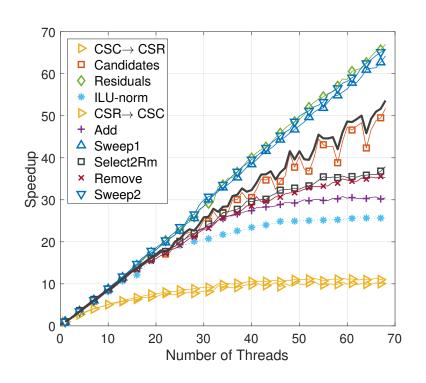


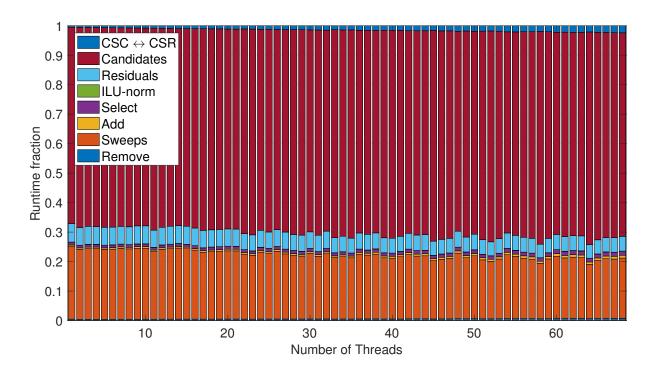
- Building blocks scale with 15% 100% parallel efficiency.
- Transposition and sort are the bottlenecks.
- Overall speedup ~35x when using 68 KNL cores.

ParILUT Scalability

topopt 120 matrix from topology optimization, 67 el/row.

Intel Xeon Phi 7250 "Knights Landing" 68 cores @1.40 GHz, 16GB MCDRAM @490 GB/s

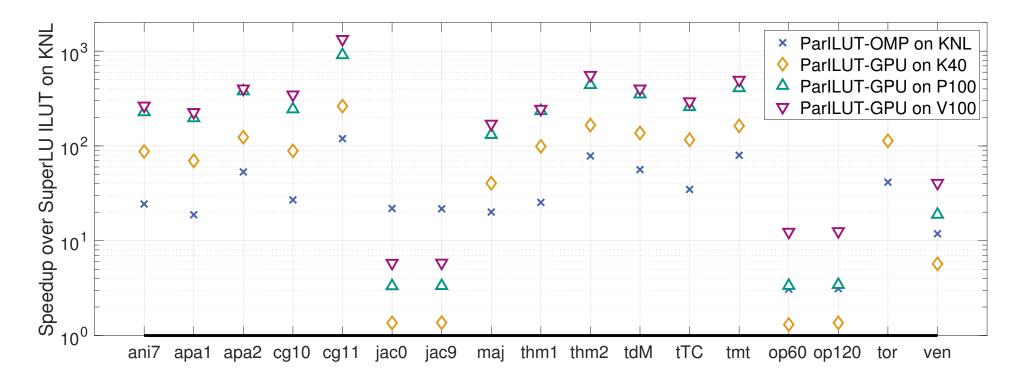




- Building blocks scale with 15% 100% parallel efficiency.
- Dominated by candidate search.
- Overall speedup ~52x when using 68 KNL cores.

ParILUT Performance across Manycore architectures

We compare against ILUT in SuperLU from LBNL – and thank *Sherry Li* for help and support in doing this comparison. The SuperLU ILUT is a sequential implementation – **ParILUT is the first parallel ILUT algorithm**.



Bibliography: ¹Chow et al. "Asynchronous Iterative Algorithm for Computing Incomplete Factorizations on GPUs". In ISC 2015.

²Anzt et al. "ParILUT – A new parallel threshold ILU". In: SIAM Journal on Scientific Comp. (2018).

³Ribizel et al. "Approximate and Exact Selection on GPUs". In AsHES workshop, 2019.

⁴Anzt et al. "ParILUT – A parallel threshold ILU for GPUs". In IPDPS conference, 2019.

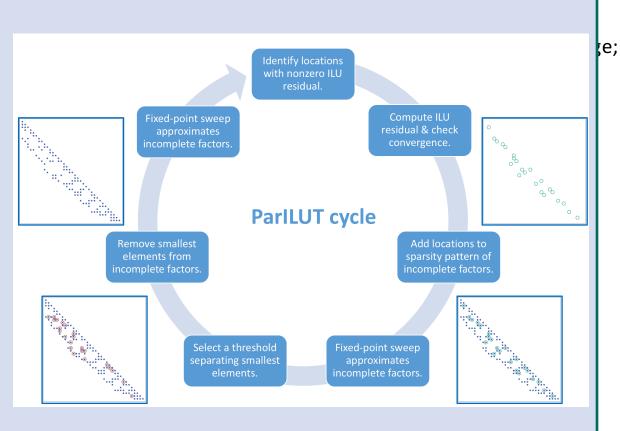
The Manycore Challenge

Reformulate algorithms as element-parallel fixed-point Iterations

Algorithms need fine-grained parallelism

-- thousands of SIMT threads!

- Global synchronizations are killing performance;
- Runtime scheduling of thread blocks virtually impossible;
- Memory access pattern central (coalesced data access);
- Asynchronous algorithms needed;
- Reformulation as fixed-point iteration;



Copyright@ORNL

The Software Challenge

- Software is an central component in Exascale Computing!
 - We should focus more on sustainable software than on hardware development.
 - Software often lives longer than a HPC system.
- Close collaboration with hardware developers and Universities is key to prepare for future hardware!
- We still lack the acceptance of scientific software engineers!
 - The standard perception is: we buy new hardware, your core runs faster....
 - We need the academic acceptance of scientific software engineers!
- We are running an inefficient, publication-driven system ignoring the importance of production code!

The Typical Publication in HPC Conferences / Journals

- An article describing a new algorithm / implementation outperforming existing solutions.
- Performance benchmarks on high-end HPC resources (not even archived)
- Internal prototype code (not publicly accessible)

How does the community benefit from reading this?

- + New ideas presented;
- Performance evaluations presented;
- Performance evaluations are typically "selective";
- Users / Application Scientists need to re-implement code;
- Difficult if few details are provided;
- Not integrated into community packages;

The Typical Publication in HPC Conferences / Journals

- An article describing a new algorithm / implementation outperforming existing solutions.
- Performance benchmarks on high-end HPC resources (not even archived)
- Internal prototype code (not publicly accessible)

How does the community benefit from reading this?

- New ideas presented;
- Performance evaluations presented;
- Performance evaluations are typically "selective";
- Users / Application Scientists need to re-implement code;
- Difficult if few details are provided;
- Not integrated into community packages;

Established community software packages

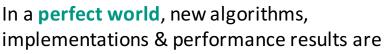
- are the powertrain behind many scientific simulation codes;
- often fall short in providing production-ready implementations of novel algorithms;
- often accept merge requests that lack comprehensive documentation and rigorous performance assessment;

The Typical Publication in HPC Conferences / Journals

- An article describing a new algorithm / implementation outperforming existing solutions.
- Performance benchmarks on high-end HPC resources (not even archived)
- Internal prototype code (not publicly accessible)

How does the community benefit from reading this?

- New ideas presented;
- Performance evaluations presented;
- Performance evaluations are typically "selective";
- Users / Application Scientists need to re-implement code;
- Difficult if few details are provided;
- Not integrated into community packages;



- fully reproducible;
- publicly accessible;
- ready to be used by the community / domain scientists;
- integrated into community packages;

Established community software packages

- are the powertrain behind many scientific simulation codes;
- often fall short in providing production-ready implementations of novel algorithms;
- often accept merge requests that lack comprehensive documentation and rigorous performance assessment;

The Typical Publication in HPC Conferences / Journals

- An article describing a new algorithm / implementation outperforming existing solutions.
- Performance benchmarks on high-end HPC resources (not even archived)
- Internal prototype code (not publicly accessible)

How does the community benefit from reading this?

- New ideas presented;
- Performance evaluations presented;
- Performance evaluations are typically "selective";
- Users / Application Scientists need to re-implement code;
- Difficult if few details are provided;
- Not integrated into community packages;

In a **perfect world**, new algorithms, implementations & performance results are

- fully reproducible;
- publicly accessible;
- ready to be used by the community / domain scientists;
- integrated into community packages;

Established community software packages

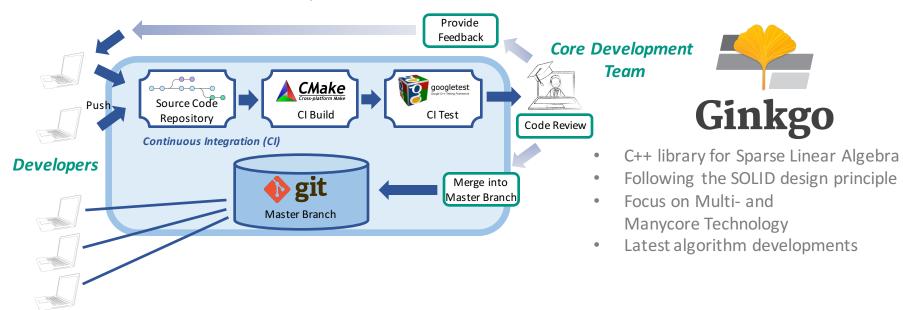
- are the powertrain behind many scientific simulation codes;
- often fall short in providing production-ready implementations of novel algorithms;
- often accept merge requests that lack comprehensive documentation and rigorous performance assessment;

Why are we not changing the system?

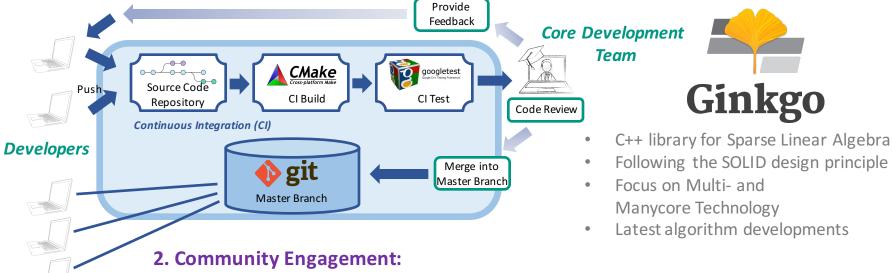
- effort(Prototype Code) << effort(Production Code);
- Little academic reward for sustainable software development;
- Promotion and appointability based on scientific papers;

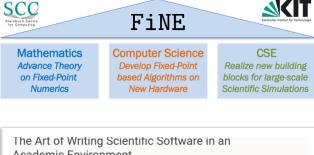
Status Quo Extremely inefficient and unsatisfying!

1. Sustainable Software Development in the HYIG FiNE



1. Sustainable Software Development in the HYIG FiNE





- Changing the Culture of Academic Software Development
- Promote Sustainable Algorithm and Software Development (PASC 2019) www.bit.ly/ContinuousBenchmarking
- Address the Challenges of Academic Software Development (BSSw Blog Article) <u>www.bit.ly/AcademicResearchSoftware</u>
- Argue for accepting Software Patches as Full Conference Contributions (PDSEC 2019)
 <u>www.bit.ly/AreWeDoingTheRightThing</u>
- Welcome Software Patches as Conference Contributions at
 Workshop on Scalable Data Analytics in Scientific Computing (SDASC 2020) in conjunction with ISC'20 in Frankfurt

Library core contains architecture-agnostic algorithm implementation;

Architecture-specific kernels execute the algorithm on target architecture;

Kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- ..

Core

Library Infrastructure Algorithm Implementations

- Iterative Solvers
- Preconditioners
- . . .

Library core contains architecture-agnostic algorithm implementation;

Architecture-specific kernels execute the algorithm on target architecture;

Kernels

Reference

Reference kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- •

Reference are sequential kernels to check correctness of algorithm design and optimized kernels;

Core

Library Infrastructure Algorithm Implementations

- Iterative Solvers
- Preconditioners
-

Library core contains architecture-agnostic algorithm implementation;

Runtime polymorphism selects the right kernel depending on the target architecture;

Architecture-specific kernels execute the algorithm on target architecture;

Kernels

Reference

Reference kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- ...

Reference are sequential kernels to check correctness of algorithm design and optimized kernels;

Core

Library Infrastructure Algorithm Implementations

- Iterative Solvers
- Preconditioners
- •

CUDA

NVIDIA-GPU kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- ..

OpenMP

OpenMP-kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- ...

Optimized architecture-specific kernels;

Library core contains architecture-agnostic algorithm implementation;

Runtime polymorphism selects the right kernel depending on the target architecture;

Architecture-specific kernels execute the algorithm on target architecture;

Kernels

Reference

Reference kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- ...

Reference are sequential kernels to check correctness of algorithm design and optimized kernels;

Core

Library Infrastructure Algorithm Implementations

- Iterative Solvers
- Preconditioners
- •

CUDA

NVIDIA-GPU kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- . . .

OpenMP

OpenMP-kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- ...

Optimized architecture-specific kernels;

Library core contains architecture-agnostic algorithm implementation;

Runtime polymorphism selects the right kernel depending on the target architecture;

Architecture-specific kernels execute the algorithm on target architecture;

Kernels

Reference

Reference kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- ...

Reference are sequential kernels to check correctness of algorithm design and optimized kernels;

Core

Library Infrastructure Algorithm Implementations

- Iterative Solvers
- Preconditioners
-

CUDA

NVIDIA-GPU kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- . . .

OpenMP

OpenMP-kernels

- Accessor
- SpMV
- Solver kernels
- Precond kernels
- ...

HIP

AMD-GPU kernels

- Accessor
- SpMV

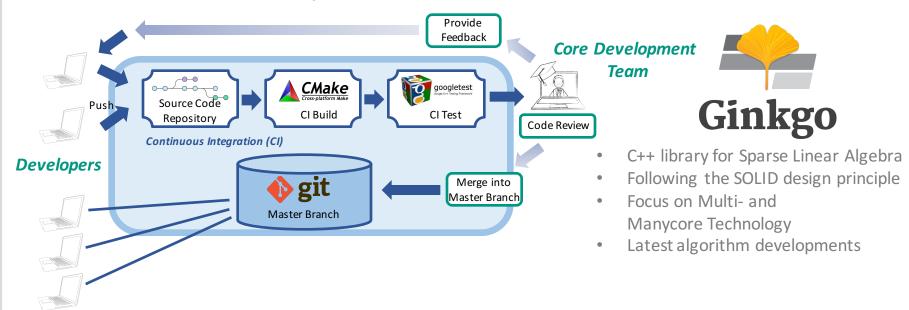
Multi-GPU

NVIDIA-GPU kernels

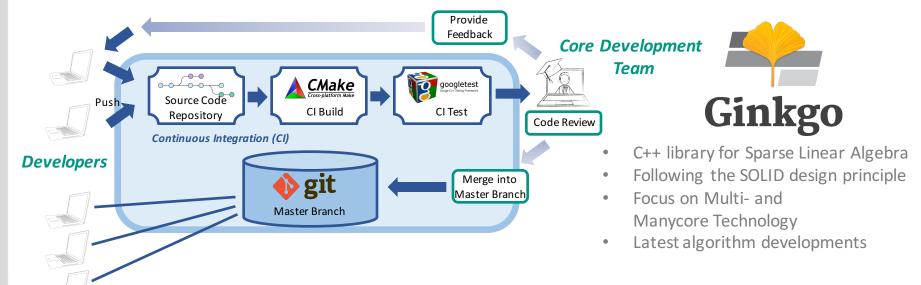
- Accessor
- SpMV
- Solver kernels
- Precond kernels
- . . .

Optimized architecture-specific kernels:

1. Sustainable Software Development in the HYIG FiNE



1. Sustainable Software Development in the HYIG FiNE

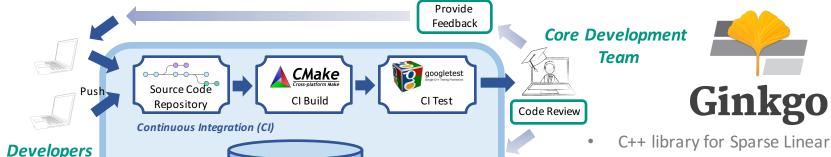


- 2. Community Engagement:
 Changing the Culture of Academic Software Development
 - Promote Sustainable Algorithm and Software Development (PASC 2019) www.bit.ly/ContinuousBenchmarking
 - Address the Challenges of Academic Software Development (BSSw Blog Article)
 <u>www.bit.ly/AcademicResearchSoftware</u>
 - Argue for accepting Software Patches as Full Conference Contributions (PDSEC 2019)
 <u>www.bit.ly/AreWeDoingTheRightThing</u>

1. Sustainable Software Development in the HYIG FiNE

git

Master Branch



- C++ library for Sparse Linear Algebra
- Following the SOLID design principle
- Focus on Multi- and Manycore Technology
- Latest algorithm developments

2. Community Engagement:

Changing the Culture of Academic Software Development

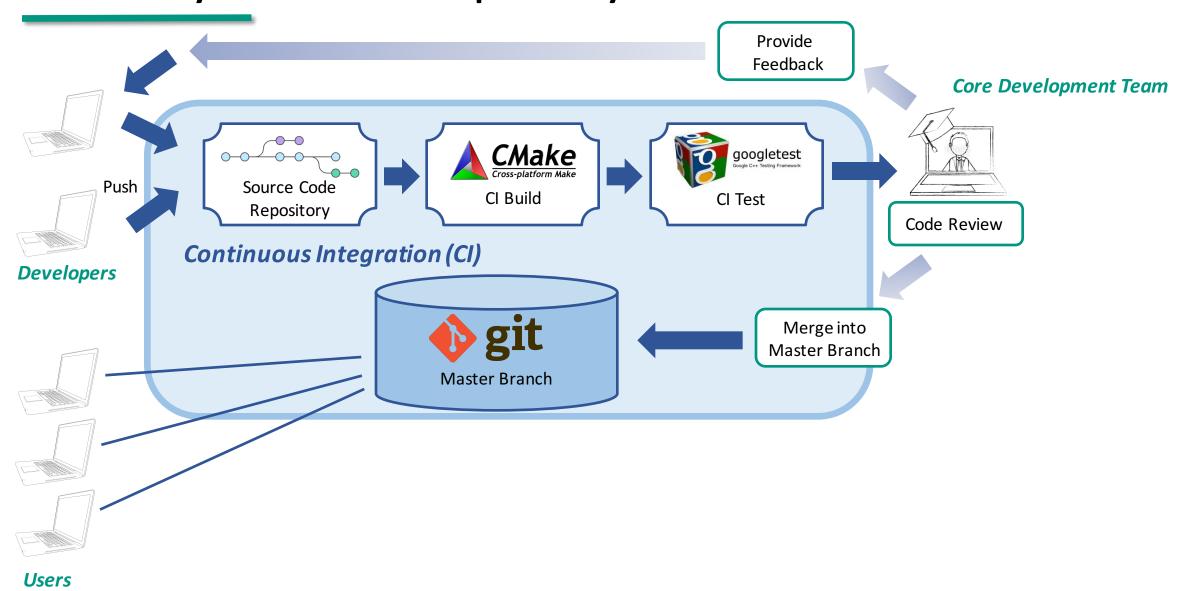
Promote Sustainable Algorithm and Software Development (PASC 2019) www.bit.ly/ContinuousBenchmarking

Merge into

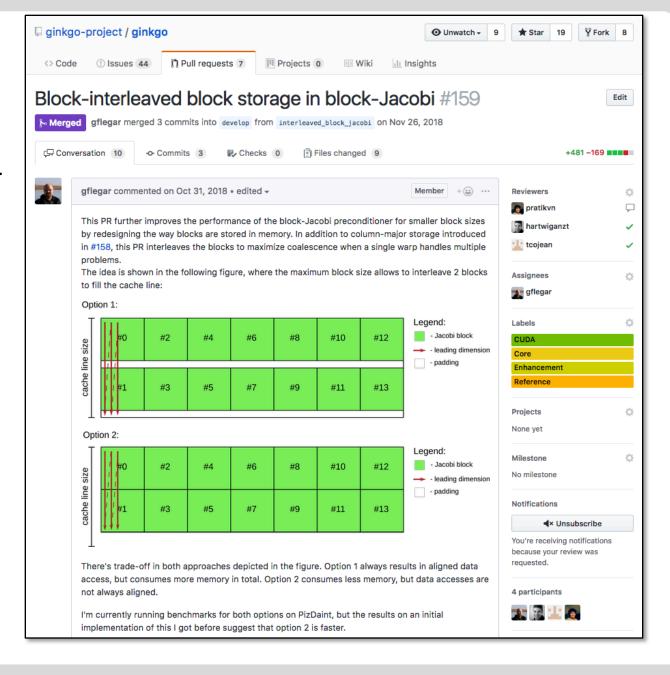
Master Branch

- Address the **Challenges** of **Academic Software** Development (BSSw Blog Article) www.bit.ly/AcademicResearchSoftware
- Argue for accepting **Software Patches as Full Conference Contributions** (PDSEC 2019) www.bit.ly/AreWeDoingTheRightThing

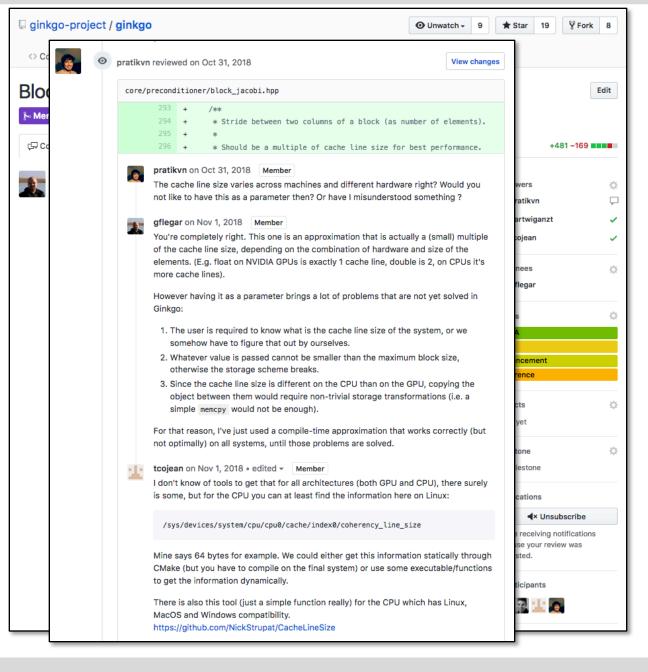
A Healthy Software Development Cycle



- Software patches usually submitted as merge-/ push- request in the software versioning system (e.g. Git).
- The patches are accompanied by detailed documentation explaining code functionality and feature usage.



- Software patches usually submitted as merge-/ push- request in the software versioning system (e.g. Git).
- The patches are accompanied by detailed documentation explaining code functionality and feature usage.
- The community can comment and review the code.



- Software patches usually submitted as *merge-/* push- request in the software versioning system (e.g. Git).
- The patches are accompanied by detailed documentation explaining code functionality and feature usage.
- The community can comment and review the code.
- The submitter can attach a performance analysis to the software patch.

- Software patches usually submitted as merge-/ push- request in the software versioning system (e.g. Git).
- The patches are accompanied by detailed documentation explaining code functionality and feature usage.
- The community can comment and review the code.
- The submitter can attach a performance analysis to the software patch.
- Software patches can either add new functionality...

```
170 core/preconditioner/block_jacobi.hpp
                                                                                                                                         ¥ Fork 8
             @@ -78,6 +78,106 @@ struct index_type<Op<ValueType, IndexType>> {
         81 + // TODO: replace this with a custom accessor
                 * Defines the parameters of the interleaved block storage scheme used by
                   @tparam IndexType type used for storing indices of the matrix
                     * The offset between consecutive blocks within the group.
                    IndexType block_offset;
                     * The offset between two block groups.
                    IndexType group_offset;
                     * Then base 2 power of the group.
                     * I.e. the group contains `1 << group_power` elements.
                    uint32 group power;
                      * Returns the number of elements in the group.
                     * @return the number of elements in the group
                    GKO_ATTRIBUTES IndexType get_group_size() const noexcept
                        return one<IndexType>() << group_power;</pre>
                     * Computes the storage space required for the requested number of blocks.
                     * @param num_blocks the total number of blocks that needs to be stored
                     * @return the total memory (as the number of elements) that need to be
                               allocated for the scheme
                    GKO_ATTRIBUTES IndexType compute_storage_space(IndexType num_blocks) const
```

- Software patches usually submitted as merge-/ push- request in the software versioning system (e.g. Git).
- The patches are accompanied by detailed documentation explaining code functionality and feature usage.
- The community can comment and review the code.
- The submitter can attach a performance analysis to the software patch.
- Software patches can either add new functionality...
 ... or change / enhance existing code.

```
106 cuda/preconditioner/block_jacobi_kernels.cu
                                                                                                                                           ¥ Fork 8
             @@ -48,16 +48,28 @@ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
                     compile-time list of block sizes for which dedicated generate and apply
                 using compiled_kernels = syn::compile_int_list<1, 13, 16, 32>;
                template <int max_block_size, int subwarp_size, int warps_per_block,
                          typename ValueType, typename IndexType>
                __global__ void __launch_bounds__(warps_per_block *cuda_config::warp_size)
                    generate(size_type num_rows, const IndexType *__restrict__ row_ptrs,
                             const IndexType *__restrict__ col_idxs,
                             const ValueType *__restrict__ values,
                             ValueType *__restrict__ block_data, size_type stride,
                             ValueType *__restrict__ block_data,
                             preconditioner::block_interleaved_storage_scheme<IndexType>
                             const IndexType *__restrict__ block_ptrs, size_type num_blocks)
              @@ -79,15 +91,18 @@ __global__ void __launch_bounds__(warps_per_block *cuda_config::warp_size
                        copy_matrix<max_block_size, and_transpose>(
                            subwarp, block_size, row, 1, perm, trans_perm,
                            block data + (block ptrs[block id] * stride), stride);
                            block_data + storage_scheme.get_global_block_offset(block_id),
                            storage_scheme.get_stride());
                                                                                                                                        ubscribe
                template <int max_block_size, int subwarp_size, int warps_per_block,
                          typename ValueType, typename IndexType>
                 _global__ void __launch_bounds__(warps_per_block *cuda_config::warp_size)
                    apply(const ValueType *__restrict__ blocks, int32 stride,
                    apply(const ValueType *__restrict__ blocks,
                          preconditioner::block_interleaved_storage_scheme<IndexType>
                              storage_scheme,
                          const IndexType *__restrict__ block_ptrs, size_type num_blocks,
                          const ValueType *__restrict__ b, int32 b_stride,
                          ValueType *__restrict__ x, int32 x_stride
```

Software Patches as Conference Contribution

- ✓ Full reproducibility and traceability is ensured;
- ✓ Not only reviewers but the complete community can track the software patch;
- ✓ The versioning systems helps to **identify the main contributors** of a software contribution, **ensuring full recognition**;
- ✓ The versioning systems also links to the right person in case of technical questions;
- ✓ Novel algorithms and hardware-optimized implementations are quickly integrated into community packages;
- ✓ The code quality is increased as the community can comment on the patches;
- ✓ Software patches as conference contributions naturally imply an extremely high level of code documentation;
- ✓ Presenting patches at a conference makes the whole community aware of a new feature;
- ✓ Domain scientists can directly interact with software developers;

Software Patches as Conference Contribution

Envisioned Workflow:

- 1. The algorithm/implementation developer submits a software patch to a community package with
 - detailed description of the functionality and code documentation;
 - comprehensive performance assessment;
 - mark the patch for a conference contribution;
- 2. The core development team and the community
 - comments on the algorithm, the implementation, and the performance;
 - reviews and ultimately merges the patch;
- 3. The developer submits the patch as a conference contribution
 - linking to all documentation, performance results, and comments;
 - acknowledging significant comments from community;

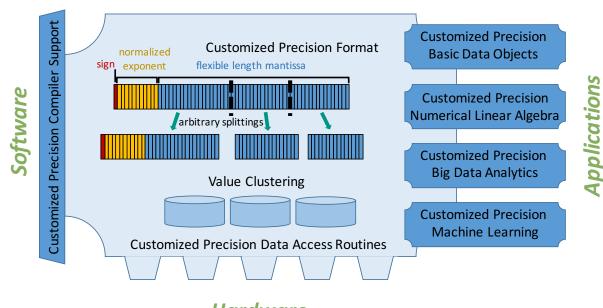
Software Patches as Conference Contribution

Envisioned Workflow:

- 1. The algorithm/implementation developer submits a software patch to a community package with
 - detailed description of the functionality and code documentation;
 - comprehensive performance assessment;
 - mark the patch for a conference contribution;
- 2. The core development team and the community
 - comments on the algorithm, the implementation, and the performance;
 - reviews and ultimately merges the patch;
- 3. The developer submits the patch as a conference contribution
 - linking to all documentation, performance results, and comments;
 - acknowledging significant comments from community;
- 4. The conference committee / external reviewers do a "light" review of functionality, documentation, performance.
- 5. If accepted, the conference contribution is presented along with a user tutorial or application examples;
- 6. The submission is as a **regular paper** included in the conference proceedings
 - potentially featuring a shorter general introduction;
 - including the algorithm description and performance assessment;
 potentially including code segments, digital artifacts, or a link to the merge request;
 - listing all (significant) code reviewers / commenters;

Summary and next steps

- Decouple arithmetic precision from memory precision.
- Using customized precisions for memory operations.
- Speedup of up to 1.3x for adaptive precision block-Jacobi preconditioning.
- Creating a Modular Precision Ecosystem
 inside Ginkgo.
 https://github.com/ginkgo-project/ginkgo



Hardware

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration and the Helmholtz Impuls und VernetzungsfondVH-NG-1241.

Parallelism inside the blocks: Fixed-point sweeps

Fixed-point sweep approximates incomplete factors.

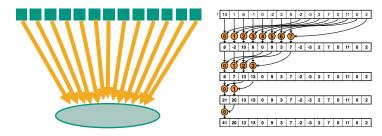
Compute ILU residual & check convergence.

Fixed-point sweeps approximate values in ILU factors and residual¹:

- Inherently parallel operation.
- Elements can be updated asynchronously.
- We can expect 100% parallel efficiency if number of cores < number of elements
- Residual norm is a global reduction.

$$F(l_{ij}, u_{ij}) = \begin{cases} \frac{1}{u_{jj}} \left(a_{ij} - \sum_{k=1}^{j-1} l_{ik} u_{kj} \right), & i > j \\ a_{ij} - \sum_{k=1}^{i-1} l_{ik} u_{kj}, & i \leq j \end{cases}$$

bilinear fixed-point iteration can be parallelized by elements



¹Chow et al. "Asynchronous Iterative Algorithm for Computing Incomplete Factorizations on GPUs". In ISC 2015.

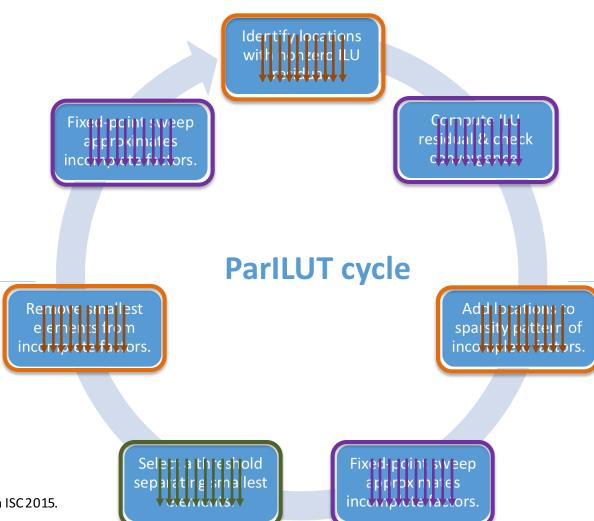
ParILUT: Parallelism inside the blocks

Interleaving fixed-point sweeps approximating values with pattern-changing symbolic routines.

Parallelism inside the building blocks:

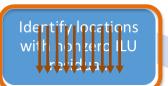
- Fixed-Point Sweeps¹
- Residuals¹
- Identify Fill-In Locations²
- Add Locations²
- Remove Locations²
- Select Threshold Separating Smallest Elements

¹Chow et al. "Asynchronous Iterative Algorithm for Computing Incomplete Factorizations on GPUs". In ISC 2015. ²Anzt et al. "ParILUT – A new parallel threshold ILU". *In: SIAM J. on Sci. Comp. (2018).*



ParILUT: Parallelism inside the blocks

Interleaving fixed-point sweeps approximating values with pattern-changing symbolic routines.



Parallelism inside the building blocks:

- Fixed-Point Sweeps¹
 Residuals¹
- Identify Fill-In Locations²
 Add Locations²
 Remove Locations²

- **Select Threshold Separating Smallest Elements**

¹Chow et al. "Asynchronous Iterative Algorithm for Computing Incomplete Factorizations on GPUs". In ISC 2015. ²Anzt et al. "ParILUT – A new parallel threshold ILU". In: SIAM J. on Sci. Comp. (2018).

This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers $x_0, x_1, x_2, x_3, \dots x_{n-1}$, we want to find the element x_{i_k} such that in the sorted sequence

$$x_{i_0} \le x_{i_1} \le x_{i_2} \le x_{i_3} \le \dots \le x_{i_k} \le \dots x_{i_{n-1}}$$

the element x_{i_k} is located in position k.

We do not necessarily need to sort the complete sequence!

Tobias Ribizel

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*†

*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

tobias.ribizel@student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU

SampleSelect Algorithm

Pick splitters

Sort splitters

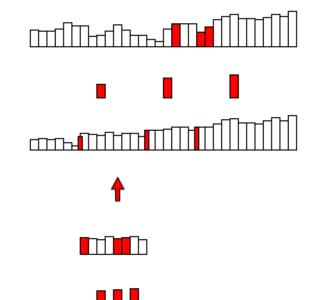
Group by bucket

Select bucket

Pick splitters

Sort splitters

Group by bucket



This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers $x_0, x_1, x_2, x_3, \dots x_{n-1}$, we want to find the element x_{i_k} such that in the sorted sequence

$$x_{i_0} \le x_{i_1} \le x_{i_2} \le x_{i_3} \le \dots \le x_{i_k} \le \dots x_{i_{n-1}}$$

the element x_{i_k} is located in position k.

We do not necessarily need to sort the complete sequence!

Tobias Ribizel

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*†

*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

tobias.ribizel@student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU

This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers $x_0, x_1, x_2, x_3, \dots x_{n-1}$, we want to find the element x_{i_k} such that in the sorted sequence

$$x_{i_0} \le x_{i_1} \le x_{i_2} \le x_{i_3} \le \dots \le x_{i_k} \le \dots x_{i_{n-1}}$$

the element x_{i_k} is located in position k.

We do not necessarily need to sort the complete sequence!

Tobias Ribizel

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*†

*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

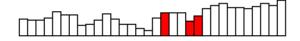
†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

tobias.ribizel@student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU

SampleSelect Algorithm

Pick splitters



This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers $x_0, x_1, x_2, x_3, \dots x_{n-1}$, we want to find the element x_{i_k} such that in the sorted sequence

$$x_{i_0} \le x_{i_1} \le x_{i_2} \le x_{i_3} \le \dots \le x_{i_k} \le \dots x_{i_{n-1}}$$

the element x_{i_k} is located in position k.

We do not necessarily need to sort the complete sequence!

Tobias Ribizel

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*†

*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

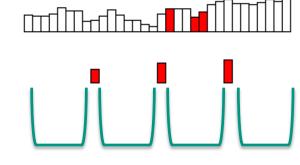
tobias.ribizel@student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU

SampleSelect Algorithm

Pick splitters

Sort splitters



Splitters separate buckets

This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers $x_0, x_1, x_2, x_3, \dots x_{n-1}$, we want to find the element x_{i_k} such that in the sorted sequence

$$x_{i_0} \le x_{i_1} \le x_{i_2} \le x_{i_3} \le \dots \le x_{i_k} \le \dots x_{i_{n-1}}$$

the element x_{i_k} is located in position k.

We do not necessarily need to sort the complete sequence!

Tobias Ribizel

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*† *Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany †Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA tobias.ribizel@student.kit.edu, hartwig.anzt@kit.edu

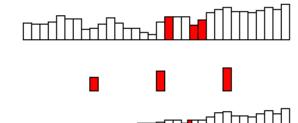
http://bit.ly/SampleSelectGPU

SampleSelect Algorithm

Pick splitters

Sort splitters

Group by bucket



This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers $x_0, x_1, x_2, x_3, \dots x_{n-1}$, we want to find the element x_{i_k} such that in the sorted sequence

$$x_{i_0} \le x_{i_1} \le x_{i_2} \le x_{i_3} \le \dots \le x_{i_k} \le \dots x_{i_{n-1}}$$

the element x_{i_k} is located in position k.

We do not necessarily need to sort the complete sequence!

Tobias Ribizel

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*†

*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

tobias.ribizel@student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU

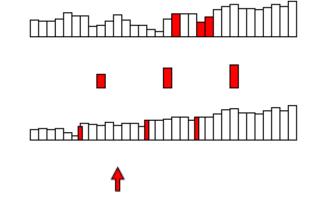
SampleSelect Algorithm

Pick splitters

Sort splitters

Group by bucket

Select bucket



This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers $x_0, x_1, x_2, x_3, \dots x_{n-1}$, we want to find the element x_{i_k} such that in the sorted sequence

$$x_{i_0} \le x_{i_1} \le x_{i_2} \le x_{i_3} \le \dots \le x_{i_k} \le \dots x_{i_{n-1}}$$

the element x_{i_k} is located in position k.

We do not necessarily need to sort the complete sequence!

Tobias Ribizel

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*† *Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany †Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA tobias.ribizel@student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU

SampleSelect Algorithm

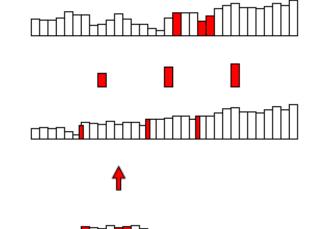
Pick splitters

Sort splitters

Group by bucket

Select bucket

Pick splitters



This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers $x_0, x_1, x_2, x_3, \dots x_{n-1}$, we want to find the element x_{i_k} such that in the sorted sequence

$$x_{i_0} \le x_{i_1} \le x_{i_2} \le x_{i_3} \le \dots \le x_{i_k} \le \dots x_{i_{n-1}}$$

the element x_{i_k} is located in position k.

We do not necessarily need to sort the complete sequence!

Tobias Ribizel

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*†

*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

tobias.ribizel@student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU

SampleSelect Algorithm

Pick splitters

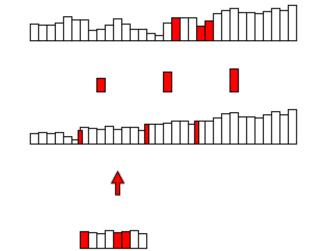
Sort splitters

Group by bucket

Select bucket

Pick splitters

Sort splitters



This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers $x_0, x_1, x_2, x_3, \dots x_{n-1}$, we want to find the element x_{i_k} such that in the sorted sequence

$$x_{i_0} \le x_{i_1} \le x_{i_2} \le x_{i_3} \le \dots \le x_{i_k} \le \dots x_{i_{n-1}}$$

the element x_{i_k} is located in position k.

We do not necessarily need to sort the complete sequence!

Tobias Ribizel

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*†

*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

tobias.ribizel@student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU

SampleSelect Algorithm

Pick splitters

Sort splitters

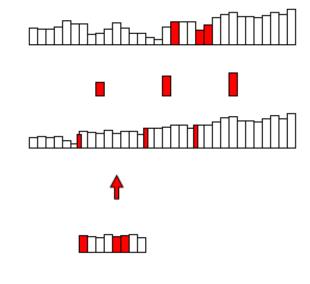
Group by bucket

Select bucket

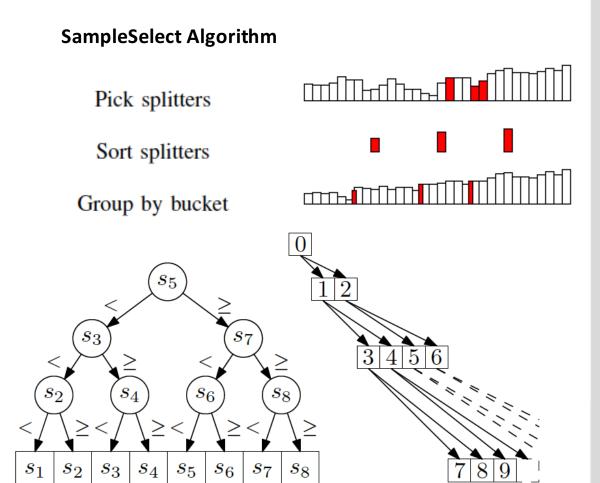
Pick splitters

Sort splitters

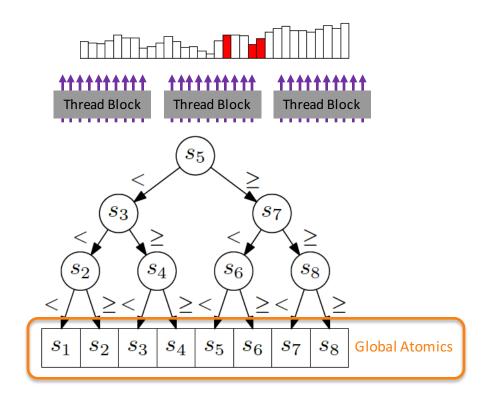
Group by bucket



- We only copy elements of the bucket we are interested in;
- In case of identical splitter elements, they are placed in an equality bucket;
- If target rank is in an *equality bucket*, the algorithm can terminate early by returning lower bound;
- For sorting the splitters, small input datasets, and the lowest recursion level a bitonic sort in shared memory is used;
- Use a binary search tree to sort elements into the buckets;

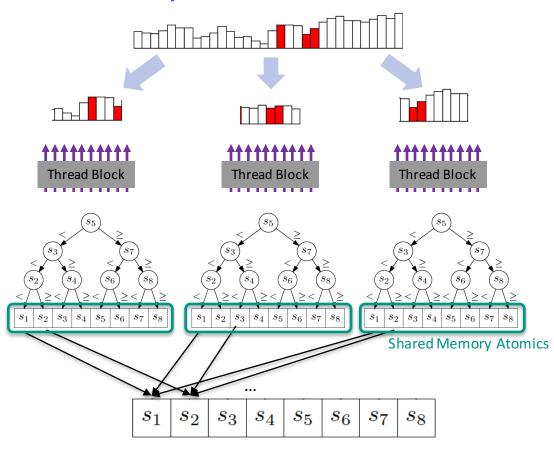


Global Memory Atomics



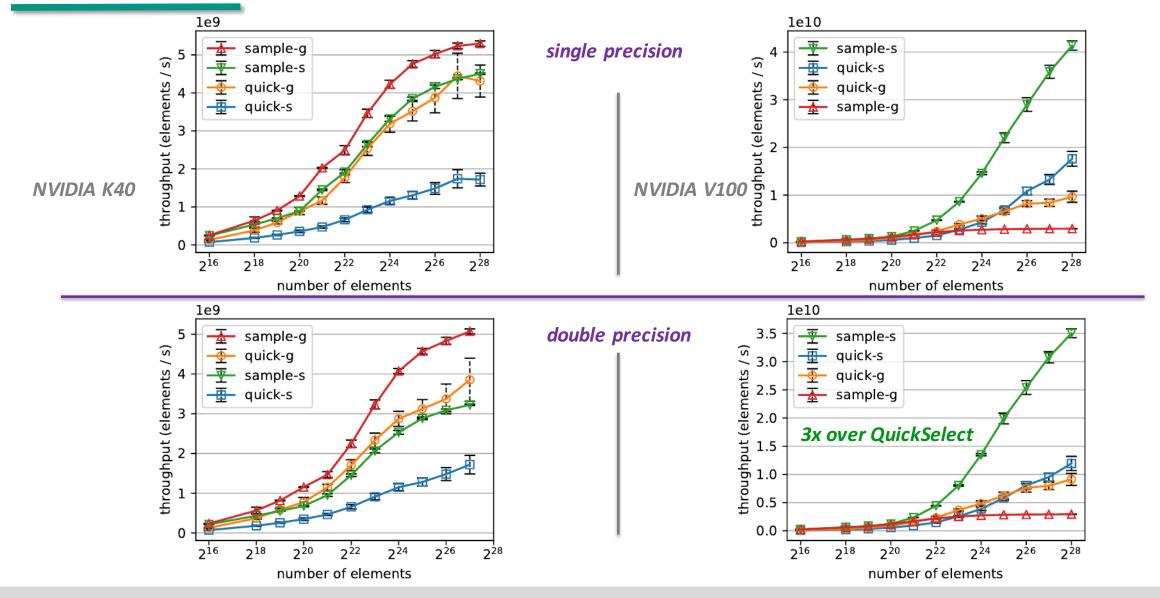
- Run SampleSelect using all resources on complete data set;
- Use global atomics to generate bucket counts;

Shared Memory Atomics



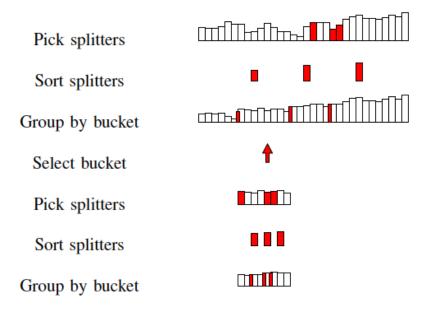
- Split data set into chunks, assign to thread blocks;
- Each thread block runs bucket count on its data;
- Use a global reduction to get global bucket counts;

- -g: global memory atomics
- -s: shared memory atomics



Approximate Threshold Selection

SampleSelect Algorithm



Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*†

*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany

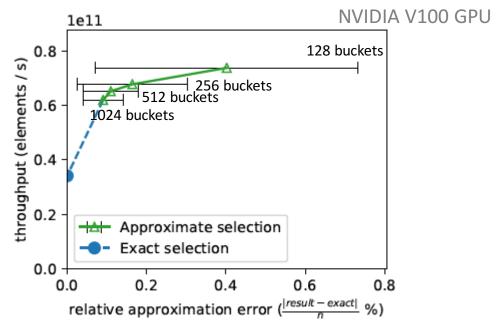
†Innovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

tobias.ribizel@student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU

We do not descent to the lowest level of the recursion tree if we accept an approximate threshold.

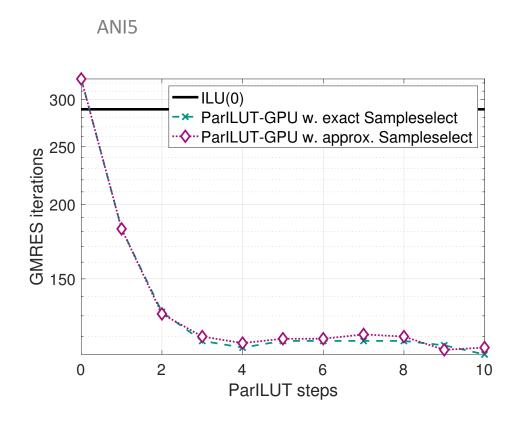
- Accuracy depends on the ratio splitters vs. dataset size;
- Independent of value distribution (works on ranks, only);

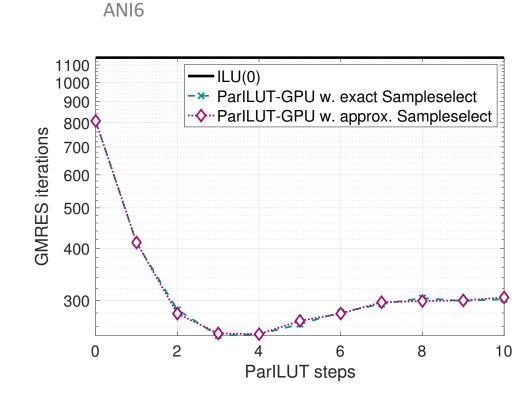


Approximate selection on 2²⁸ uniformly distributed single precision values using 1 recursion level, only.

Approximate Threshold Selection

Impact of exact/approximate SampleSelect on ParILUT preconditioner quality



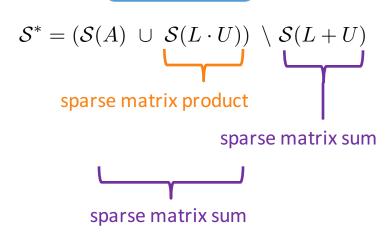


Parallelism inside the blocks: Candidate search

Identify locations that are symbolically nonzero:

- Combination of sparse matrix product and sparse matrix sums.
- Building blocks available in SparseBLAS.
- Blocks can be combined into one kernel for higher (memory) efficiency.
- Kernel can be parallelized by rows.
- Cost heavily dependent on sparsity pattern.
- Kernel performance bound by memory bandwidth.
- Design specialized Kernel².

Identify locations with nonzero ILU residual.

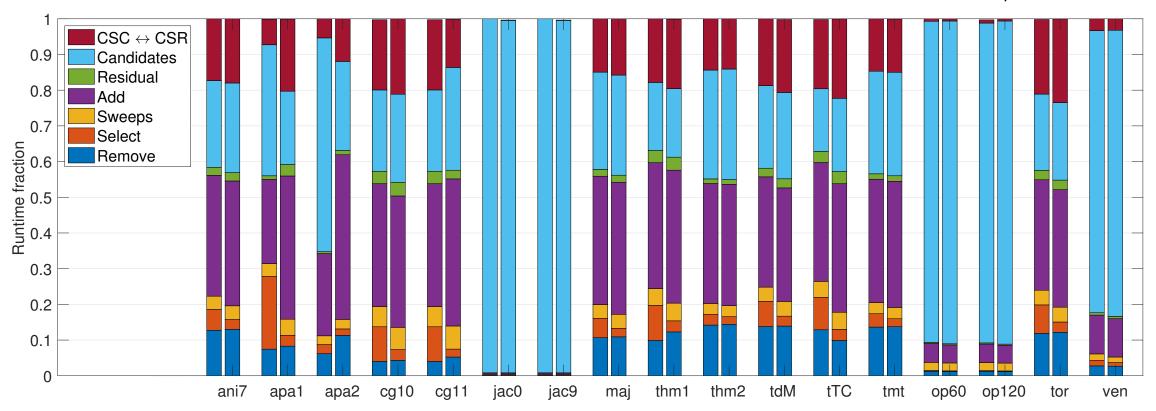


²Anzt et al. "ParILUT – A new parallel threshold ILU". In: SIAM J. on Sci. Comp. (2018).

ParILUT Performance on GPUs

Impact of exact(1^{st} bar) / approximate (2^{nd} bar) SampleSelect on ParlLUT runtime breakdown

NVIDIA V100 GPU. Matrices taken from Suite Sparse Matrix Collection.



ParILUT Performance on GPUs

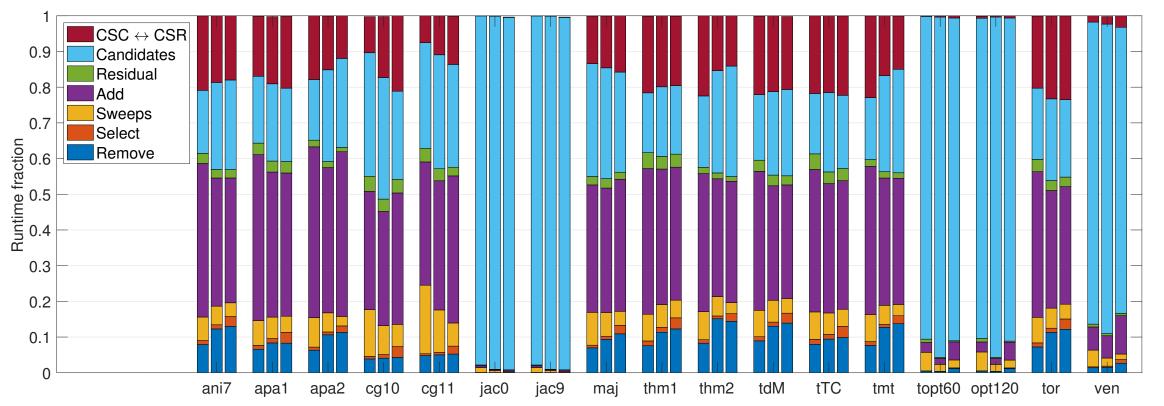
ParILUT performance across different GPU generations:

1st bar: NVIDIA K40

2nd bar: NVIDIA P100

3rd bar: NVIDIA V100

Matrices taken from Suite Sparse Matrix Collection.



We iteratively solve a linear system of the form Ax = bWhere $A \in \mathbb{R}^{n \times n}$ nonsingular and $b, x \in \mathbb{R}^n$.

The convergence rate typically depends on the conditioning of the linear system, which is the ratio between the largest and smallest eigenvalue.

$$\operatorname{cond}_{2}(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\frac{1}{\lambda_{min}}}{\frac{1}{\lambda_{max}}} = \operatorname{cond}_{2}(A^{-1})$$

We iteratively solve a linear system of the form Ax = bWhere $A \in \mathbb{R}^{n \times n}$ nonsingular and $b, x \in \mathbb{R}^n$.

The convergence rate typically depends on the conditioning of the linear system, which is the ratio between the largest and smallest eigenvalue.

$$\operatorname{cond}_{2}(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\frac{1}{\lambda_{min}}}{\frac{1}{\lambda_{max}}} = \operatorname{cond}_{2}(A^{-1})$$

Using a preconditioner $M \approx A^{-1}$, we can transform the linear system into a system with a lower condition number:

$$MAx = Mb$$
 (left preconditioned)

We iteratively solve a linear system of the form Ax = bWhere $A \in \mathbb{R}^{n \times n}$ nonsingular and $b, x \in \mathbb{R}^n$.

The convergence rate typically depends on the conditioning of the linear system, which is the ratio between the largest and smallest eigenvalue.

$$\operatorname{cond}_2(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\frac{1}{\lambda_{min}}}{\frac{1}{\lambda_{max}}} = \operatorname{cond}_2(A^{-1})$$

Using a preconditioner $M \approx A^{-1}$, we can transform the linear system into a system with a lower condition number:

$$MAx = Mb$$
 (left preconditioned)

If we now apply the iterative solver to the preconditioned System MAx=Mb, we usually get faster convergence.

Assume $M=A^{-1}$, then: x=MAx=Mb. Solution right available, but computing $M=A^{-1}$ is expensive...

We iteratively solve a linear system of the form Ax = bWhere $A \in \mathbb{R}^{n \times n}$ nonsingular and $b, x \in \mathbb{R}^n$.

The convergence rate typically depends on the conditioning of the linear system, which is the ratio between the largest and smallest eigenvalue.

$$\operatorname{cond}_2(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\frac{1}{\lambda_{min}}}{\frac{1}{\lambda_{max}}} = \operatorname{cond}_2(A^{-1})$$

Using a preconditioner $M \approx A^{-1}$, we can transform the linear system into a system with a lower condition number:

$$MAx = Mb$$
 (left preconditioned)

If we now apply the iterative solver to the preconditioned System MAx=Mb, we usually get faster convergence.

Assume $M = A^{-1}$, then: x = MAx = Mb. Solution right available, but computing $M = A^{-1}$ is expensive... Explicitly forming MA is very expensive. The preconditioner is usually applied implicitly in the different iteration steps.

We iteratively solve a linear system of the form Ax = bWhere $A \in \mathbb{R}^{n \times n}$ nonsingular and $b, x \in \mathbb{R}^n$.

The convergence rate typically depends on the conditioning of the linear system, which is the ratio between the largest and smallest eigenvalue.

$$\operatorname{cond}_{2}(A) = \frac{\lambda_{max}}{\lambda_{min}} = \frac{\frac{1}{\lambda_{min}}}{\frac{1}{\lambda_{max}}} = \operatorname{cond}_{2}(A^{-1})$$

Using a preconditioner $M \approx A^{-1}$, we can transform the linear system into a system with a lower condition number:

$$MAx = Mb$$
 (left preconditioned)

If we now apply the iterative solver to the preconditioned System MAx=Mb, we usually get faster convergence.

Assume
$$M=A^{-1}$$
, then: $x=MAx=Mb$.
Solution right available, but computing $M=A^{-1}$ is expensive...

Explicitly forming MA is very expensive. The preconditioner is usually applied implicitly in the different iteration steps.

Instead of forming the preconditioner $M \approx A^{-1}$ explicitly, Incomplete Factorization Preconditioners (ILU) try to find an approximate factorization:

$$A \approx L \cdot U$$

In the application phase, the preconditioner is only given implicitly, requiring two triangular solves:

$$z_{k+1} = Mr_{k+1}$$

$$M^{-1}z_{k+1} = r_{k+1}$$

$$L\underbrace{Uz_{k+1}}_{=:y} = r_{k+1}$$

$$\Rightarrow Ly = r_{k+1}, \quad Uz_{k+1} = y$$

Test matrices

Matrix	Origin	SPD	Num. Rows	Nz	$\overline{\mathrm{Nz/Row}}$
ANI5	2D anisotropic diffusion	yes	12,561	86,227	6.86
ANI6	2D anisotropic diffusion	yes	50,721	349,603	6.89
ANI7	2D anisotropic diffusion	yes	203,841	$1,\!407,\!811$	6.91
APACHE1	Suite Sparse [10]	yes	80,800	$542,\!184$	6.71
APACHE2	Suite Sparse	yes	$715,\!176$	4,817,870	6.74
CAGE10	Suite Sparse	no	$11,\!397$	$150,\!645$	13.22
CAGE11	Suite Sparse	no	39,082	$559{,}722$	14.32
JACOBIANMATO	Fun3D fluid flow [20]	no	90,708	5,047,017	55.64
JACOBIANMAT9	Fun3D fluid flow	no	90,708	5,047,042	55.64
MAJORBASIS	Suite Sparse	no	160,000	1,750,416	10.94
TOPOPTO10	Geometry optimization [24]	yes	132,300	8,802,544	66.53
TOPOPTO60	Geometry optimization	yes	132,300	$7,\!824,\!817$	59.14
TOPOPT120	Geometry optimization	yes	132,300	7,834,644	59.22
THERMAL1	Suite Sparse	yes	82,654	$574,\!458$	6.95
THERMAL2	Suite Sparse	yes	1,228,045	8,580,313	6.99
THERMOMECH_TC	Suite Sparse	yes	$102,\!158$	$711,\!558$	6.97
THERMOMECH_DM	Suite Sparse	yes	$204,\!316$	$1,\!423,\!116$	6.97
TMT_SYM	Suite Sparse	yes	726,713	5,080,961	6.99
TORSO2	Suite Sparse	no	$115,\!967$	$1,\!033,\!473$	8.91
VENKAT01	Suite Sparse	no	62,424	1,717,792	27.52

Convergence: GMRES iterations

				ParILUT					
Matrix	no prec.	ILU(0)	ILUT	0	1	2	3	4	5
ANI5	882	172	78	278	161	105	84	74	66
ANI6	1,751	391	127	547	315	211	168	143	131
ANI7	3,499	828	290	1,083	641	459	370	318	289
CAGE10	20	8	8	9	7	8	8	8	8
CAGE11	21	9	8	9	7	7	7	7	7
JACOBIANMATO	315	40	34	63	36	33	33	33	33
JACOBIANMAT9	539	66	65	110	60	55	54	53	53
MAJORBASIS	95	15	9	26	12	11	11	11	11
TOPOPT010	2,399	565	303	835	492	375	348	340	339
TOPOPT060	2,852	666	397	963	584	445	417	412	410
TOPOPT120	2,765	668	396	959	584	445	416	408	408
TORSO2	46	10	7	18	8	6	7	7	7
VENKAT01	195	22	17	42	18	17	17	17	17

Convergence: CG iterations

				ParICT					
Matrix	no prec.	IC(0)	ICT	0	1	2	3	4	5
ANI5	951	226	_	297	184	136	108	93	86
ANI6	1,926	621	_	595	374	275	219	181	172
ANI7	$3,\!895$	1,469	_	$1,\!199$	753	559	455	405	377
APACHE1	3,727	368	331	$1,\!480$	933	517	321	323	323
APACHE2	$4,\!574$	$1,\!150$	785	1,890	$1,\!197$	799	766	760	754
THERMAL1	1,640	453	412	626	447	409	389	385	383
THERMAL2	6,253	1,729	1,604	2,372	1,674	1,503	$1,\!457$	$1,\!472$	$1,\!433$
THERMOMECH_DM	21	8	8	8	7	7	7	7	7
THERMOMECH_TC	21	8	7	8	7	7	7	7	7
TMT_SYM	$5,\!481$	$1,\!453$	$1,\!185$	1,963	1,234	1,071	1,012	992	1,004
TOPOPTO10	2,613	692	331	845	551	402	342	316	313
TOPOPTO60	3,123	871	_	988	749	693	1,116	_	_
торорт120	3,062	886	_	991	837	784	2,185	_	

010

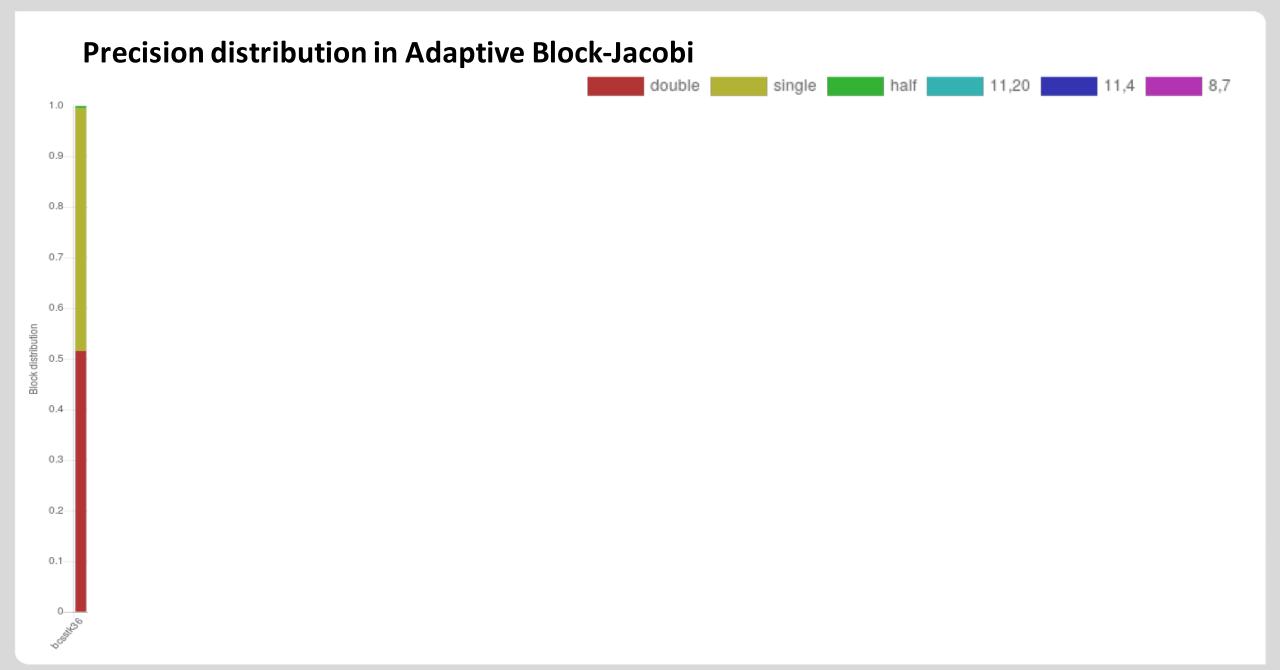
Performance

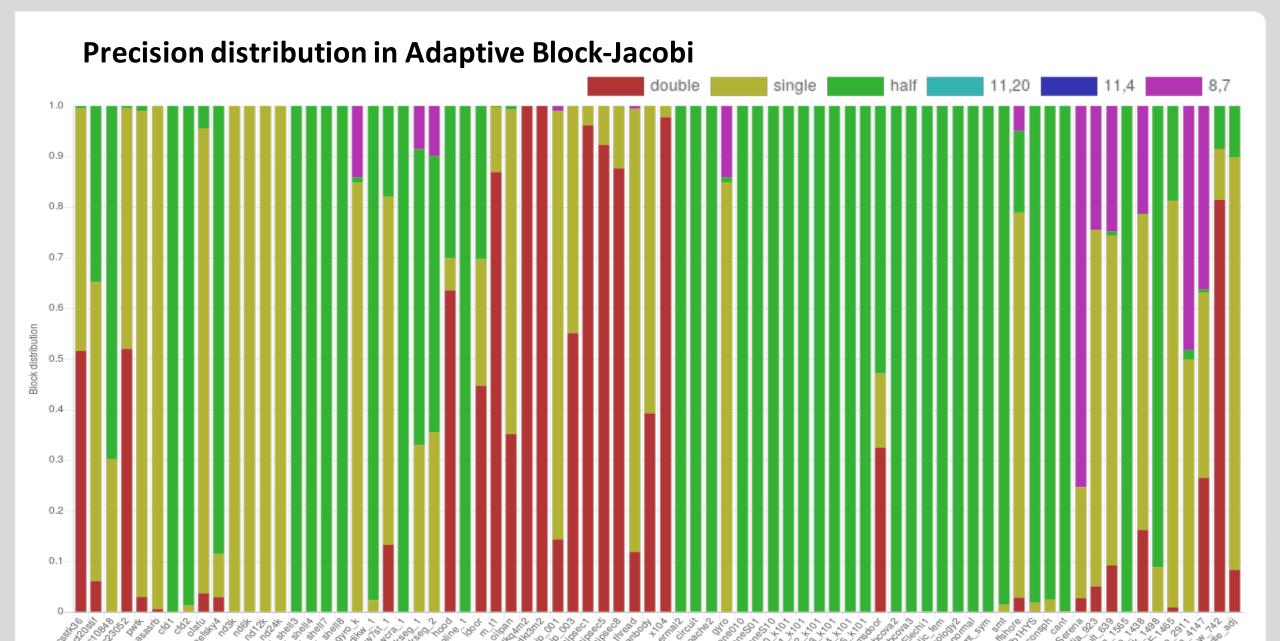
Intel Xeon Phi 7250 "Knights Landing" 68 cores @1.40 GHz,
16GB MCDRAM @490 GB/s

Runtime of 5 ParILUT / ParICT steps and speedup over SuperLU ILUT*. 16GB MCDRAM @490 GB/s

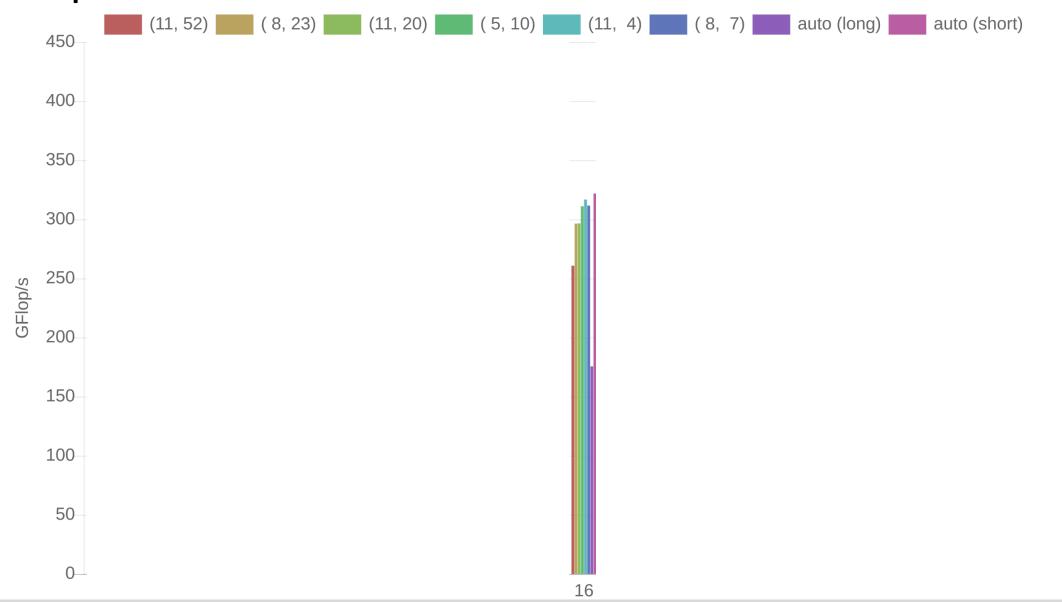
Matrix	Origin	Rows	Nonzeros	Ratio	SuperLU	ParILUT		ParICT	
ani7	2D Anisotropic Diffusion	203,841	1,407,811	6.91	10.48 s	0.45 s	23.34	0.30 s	35.16
apache2	Suite Sparse Matrix Collect.	715,176	4,817,870	6.74	62.27 s	1.24 s	50.22	0.65 s	95.37
cage11	Suite Sparse Matrix Collect.	39,082	559,722	14.32	60.89 s	0.54 s	112.56		
jacobianMat9	Fun3D Fluid Flow Problem	90,708	5,047,042	55.64	153.84 s	7.26 s	21.19		
thermal2	Thermal Problem (Suite Sp.)	1,228,045	8,580,313	6.99	91.83 s	1.23 s	74.66	0.68 s	134.25
tmt_sym	Suite Sparse Matrix Collect.	726,713	5,080,961	6.97	53.42 s	0.70 s	76.21	0.41 s	131.25
topopt120	Geometry Optimization	132,300	8,802,544	66.53	44.22 s	14.40 s	3.07	8.24 s	5.37
torso2	Suite Sparse Matrix Collect.	115,967	1,033,473	8.91	10.78 s	0.27 s	39.92	-	
venkat01	Suite Sparse Matrix Collect.	62,424	1,717,792	27.52	8.53 s	0.74 s	11.54		

*We thank Sherry Li and Meiyue Shao for technical help in generating the performance numbers.



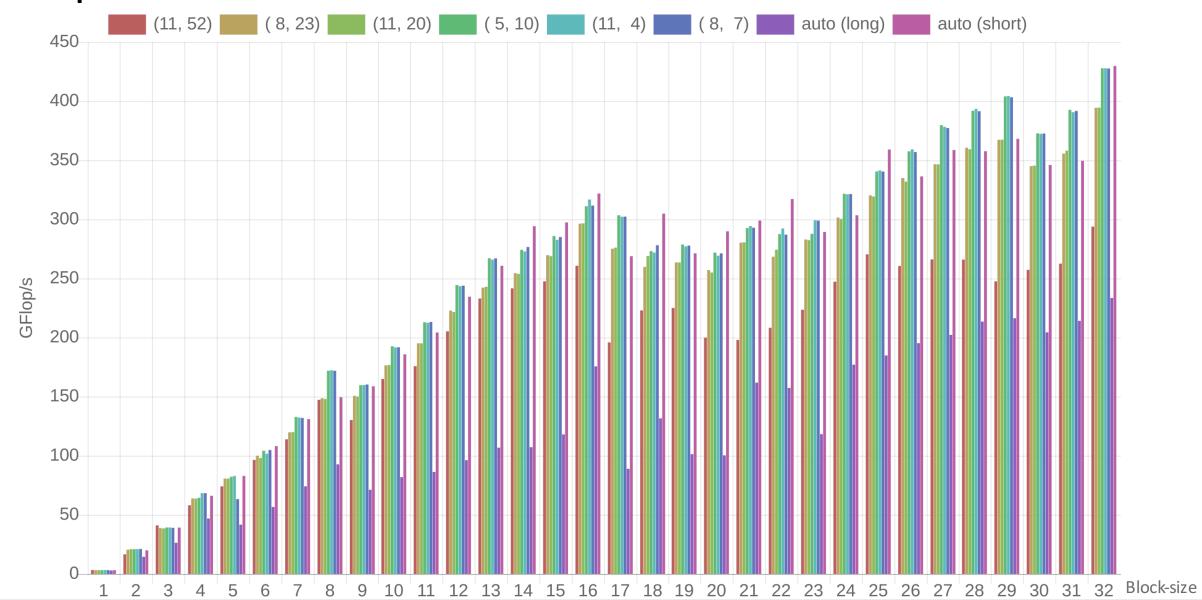


Adaptive Block-Jacobi Generation

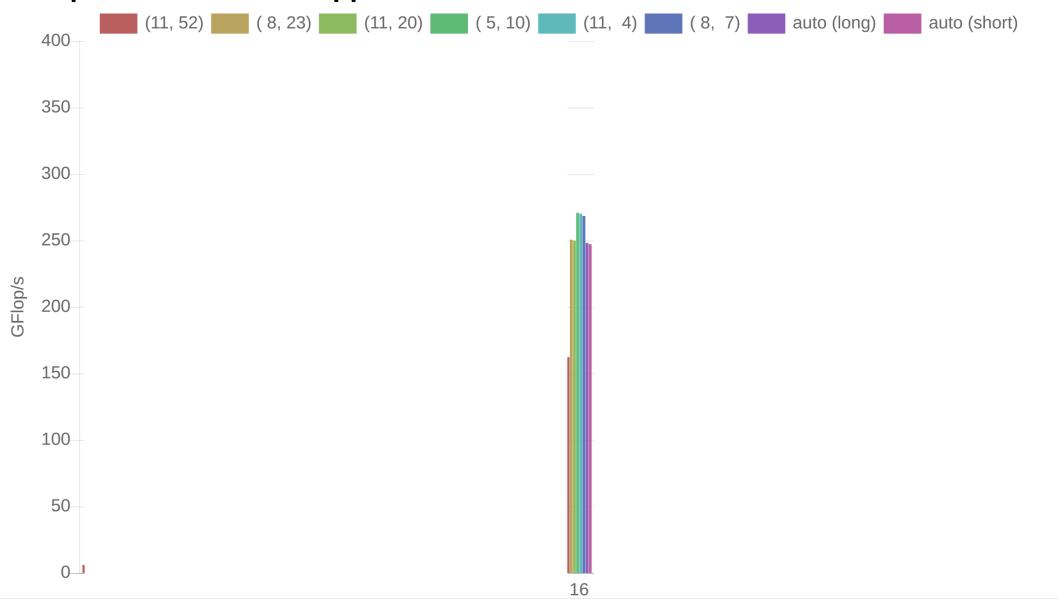


Block-size

Adaptive Block-Jacobi Generation



Adaptive Block-Jacobi Application



Block-size

Adaptive Block-Jacobi Application

