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Sparse Linear Algebra

• In sparse matrices (and vectors) most of the matrix values are zero.

• Data structures for sparse matrices ignore most or all explicit zeros.

• Sparse matrices stored in sparse data structures are typically large in size.
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Different scenarios: 

 All SpMV operations of the batch have:

1. the same system size 

(explicit zero padding to fix the sparsity pattern);

2. the same nonzero-per-row distribution 
(allows reuse of row pointers/row indices);

3. the same nonzero locations 
(reuse of row pointers/row indices and column indices);

4. the same values but distinct sparsity patterns 
(allows reuse of the values); Performance of batched SpMV on NVIDIA P100 GPU for 

inhomogeneous batch of 32 matrices from the SuiteSparse matrix 

collection with n ∈ [11, 1015], nnz ∈ [76, 38352], nnz/n ∈ [3.0, 66.0].

Sparse Linear Algebra
TB1

TB2

TB4

TB3



PeleLM is a parallel, adaptive mesh 

refinement (AMR) code that solves 
the reacting Navier-Stokes equations 
in the low Mach number regime. The 

core libraries for managing the 
subcycling AMR grids and 

communication are found in the 
AMReX source code.

https://amrex-combustion.github.io/PeleLM/overview.html

Combustion Simulations

https://amrex-codes.github.io/amrex/
https://amrex-combustion.github.io/PeleLM/overview.html


• Many sparse problems of medium size have to be solved concurrently.

• ~ 50 – 2,000 unknowns, < 50%  dense;

• All sparse systems may share the same sparsity pattern;

• An approximate solution may be acceptable (e.g., inside a non-linear solver);
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• Better approach: design batched iterative solve functionality that solves all problems concurrently.

• Problem-dependent convergence accounted for;

• No global synchronization;

• Reuse of sparsity pattern information;

• Parallelize across individual problems;

Batched Iterative Solvers



1. Batched functionality is generally 

memory-bound;
-> Urgent need to minimize main 
memory access;

 

Implication for (sparse) iterative methodsImplication for (dense) direct methods

• Algorithm steps need to be merged 

into one kernel (e.g. LU or inversion);
 

• Interfacing external components via 

main memory impacts performance;

• All algorithm components have to be in-
lined in the kernel code;
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1. Batched functionality is generally 

memory-bound;
-> Urgent need to minimize main 
memory access;

 

2. Different problems have different 
resource requirements;

-> hard to predict the register/shared 
memory requirement;

3. Different problems may result in different 

algorithm behavior;
-> unpredictable algorithm execution;

Implication for (sparse) iterative methodsImplication for (dense) direct methods

• Algorithm steps need to be merged 

into one kernel (e.g. LU or inversion);
 
 

• Different kernels for different problem 
sizes;

• Pivoting can result in some branching 

in the kernel execution;

• Interfacing external components via 

main memory impacts performance;

• All algorithm components have to be in-
lined in the kernel code;
 

• Sparse matrix memory needs unknown;

• Caching only for const data;

• Shared memory space for intermediate 
vectors unknown;

• Need to monitor iterative solver 

convergence for each problem 
individually and complete early;

• Need to schedule problems 

“appropriately”;

Kernel Execution Considerations
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Local / Global memory

Choice dependent on hardware resources and target problem

All operations must be in-lined to avoid main memory access

● Red objects: Intermediate 
vectors in SpMV: High priority 
to locate in shared memory

● Blue objects: Low priority

● Green objects: Constant 
matrices or vectors (cache)



14

Inlining operations: SpMV, preconditioner…

• Host side dispatch and the 

solver kernel is templated.

• Matrix format is templated.

• Preconditioner is templated.



PeleLM is a parallel, adaptive mesh 

refinement (AMR) code that solves 
the reacting Navier-Stokes equations 
in the low Mach number regime. The 

core libraries for managing the 
subcycling AMR grids and 

communication are found in the 
AMReX source code.

https://amrex-combustion.github.io/PeleLM/overview.html

Combustion Simulations

https://amrex-codes.github.io/amrex/
https://amrex-combustion.github.io/PeleLM/overview.html


Batched solvers for monolithic problems

Laplace 1D
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XGC is a gyrokinetic particle-in-cell code, which 

specializes in the simulation of the edge region of 
magnetically confined thermonuclear fusion plasma. 
The simulation domain can include the magnetic 

separatrix, magnetic axis and the biased material wall. 
XGC can run in total-delta-f, and conventional delta-f 

mode. The ion species are always gyrokinetic except 
for ETG simulation. Electrons can be adiabatic, 
massless fluid, driftkinetic, or gyrokinetic.

Source: https://xgc.pppl.gov/html/general_info.html

• Two species

• Ions easy to solve
• Electrons hard to solve
• Banded matrix structure

• Non-symmetric, BiCGSTAB
• n = ~1,000

• nz =  ~9,000

XGC DIII-D National Fusion Facility tokamak electromagnetic (EM) test case

https://theory.pppl.gov/research/research.php?rid=10
https://xgc.pppl.gov/html/general_info.html
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Aditya Kashi, Pratik Nayak, Dhruva Kulkarni, Aaron Scheinberg, Paul Lin, and Hartwig Anzt. Batched sparse iterative solvers on gpu for the collision 
operator for fusion plasma simulations. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 157–167. IEEE, 2022. 

XGC DIII-D National Fusion Facility tokamak electromagnetic (EM) test case
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● 8 nodes of NERSC Perlmutter: 32 A100s, 1 MPI 

per GPU; single socket 64-core AMD EPYC

● 8 nodes OLCF Frontier: 32 MI250X, 64 GCDs, 1 

MPI per GCD; single socket 64-core AMD EPYC

● 8 nodes ALCF Aurora: 48 Intel Data Center Max 

1550, 96 tiles, 1 MPI per tile; dual socket 52-core 

Intel CPU Max 9470C SPR

XGC DIII-D National Fusion Facility tokamak electromagnetic (EM) test case
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• Applications need to solve many small problems in parallel – these are not always dense.

• Iterative solvers can be much faster if problems are well conditioned.

• Performance heavily depends on problem characteristics and implementation.

• Implementing batched sparse solvers is challenging.

• Convergence is problem-dependent.

• One-kernel design necessary to achieve good performance. This includes the choice of matrix format 

and preconditioning.

• Hardware characteristics and problem characteristics need to be met.

• Which data to locate in shared memory? (changing vectors). 

• Which data to locate in main memory, hope for caching? (constant data, matrix)

• Very application dependent

• Need to implement kernel and run on hardware to see benefits for a given problem.

• Much harder to develop off-the-shelf solutions.

Findings from working with PeleLM and XGC production simulations
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