
Hartwig Anzt
Innovative Computing Lab, University of Tennessee

Batched Iterative Solvers in Plasma Fusion Simulations
JLESC 2023
Bordeaux, France

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S.
Department of Energy Office of Science and the National Nuclear Security Administration, the Horizon2020
Program of the European Commission, and the Helmholtz Impuls und VernetzungsfondVH-NG-1241.

Pratik NayakAditya KashiIsha Aggarwal Dhruva Kulkarni Paul Lin

Motivation: Combustion simulations

PeleLM is a parallel, adaptive mesh refinement (AMR)
code that solves the reacting Navier-Stokes equations
in the low Mach number regime. The core libraries for
managing the subcycling AMR grids and
communication are found in the AMReX source code.

https://amrex-combustion.github.io/PeleLM/overview.html

https://amrex-codes.github.io/amrex/
https://amrex-combustion.github.io/PeleLM/overview.html

Batched Iterative Solver Setting

• Many sparse problems of medium size have to be solved concurrently.
• ~ 50 – 2,000 unknowns, < 50% dense;
• All sparse systems may share the same sparsity pattern;
• An approximate solution may be acceptable (e.g., inside a non-linear solver);

Batched Iterative Solver Setting

• Many sparse problems of medium size have to be solved concurrently.
• ~ 50 – 2,000 unknowns, < 50% dense;
• All sparse systems may share the same sparsity pattern;
• An approximate solution may be acceptable (e.g., inside a non-linear solver);

• One solution is to arrange the individual systems on the main diagonal of one large system.
• Convergence determined by the “hardest” problem;
• No reuse of sparsity pattern information;
• Global synchronization points;

Batched Iterative Solver Setting

• Many sparse problems of medium size have to be solved concurrently.
• ~ 50 – 2,000 unknowns, < 50% dense;
• All sparse systems may share the same sparsity pattern;
• An approximate solution may be acceptable (e.g., inside a non-linear solver);

• One solution is to arrange the individual systems on the main diagonal of one large system.
• Convergence determined by the “hardest” problem;
• No reuse of sparsity pattern information;
• Global synchronization points;

• Better approach: design batched iterative solve functionality that solves all problems concurrently.
• Problem-dependent convergence accounted for;
• No global synchronization;
• Reuse of sparsity pattern information;
• Parallelize across individual problems;

Performance aspects of batched kernels

1. Batched functionality is generally
memory-bound;
-> Urgent need to minimize main
memory access;

Implication for (sparse) iterative methodsImplication for (dense) direct methods

• Algorithm steps need to be merged
into one kernel (e.g. Gauss-Jordan-
Elimination for inversion);

• Interfacing external components via
main memory impacts performance;

• All algorithm components have to be in-
lined in the kernel code;

1. Batched functionality is generally
memory-bound;
-> Urgent need to minimize main
memory access;

2. Different problems have different
resource requirements;
-> hard to predict the register/shared
memory requirement;

Implication for (sparse) iterative methodsImplication for (dense) direct methods

• Algorithm steps need to be merged
into one kernel (e.g. Gauss-Jordan-
Elimination for inversion);

• Different kernels for different
problem sizes;

• Interfacing external components via
main memory impacts performance;

• All algorithm components have to be in-
lined in the kernel code;

• Sparse matrix memory needs unknown;
• Caching can only be use for const data;
• Shared memory space for intermediate

vectors unknown;

Performance aspects of batched kernels

Performance aspects of batched kernels

1. Batched functionality is generally
memory-bound;
-> Urgent need to minimize main
memory access;

2. Different problems have different
resource requirements;
-> hard to predict the register/shared
memory requirement;

3. Different problems may result in
different algorithm behavior;
-> unpredictable algorithm execution;

Implication for (sparse) iterative methodsImplication for (dense) direct methods

• Algorithm steps need to be merged
into one kernel (e.g. Gauss-Jordan-
Elimination for inversion);

• Different kernels for different
problem sizes;

• Pivoting can result in some
branching in the kernel execution;

• Interfacing external components via
main memory impacts performance;

• All algorithm components have to be in-
lined in the kernel code;

• Sparse matrix memory needs unknown;
• Caching can only be use for const data;
• Shared memory space for intermediate

vectors unknown;

• Need to monitor iterative solver
convergence for each problem
individually and complete early;

• Need to schedule problems
“appropriately”;

Performance aspects of batched kernels

● Red objects: Intermediate vectors in SpMV: High priority

● Blue objects: Other vectors: Low priority

● Green objects: Constant matrices or vectors (cache)

First experiences with Ginkgo’s batched iterative solvers in XGC

XGC is a gyrokinetic particle-in-cell code, which
specializes in the simulation of the edge region of
magnetically confined thermonuclear fusion plasma.
The simulation domain can include the magnetic
separatrix, magnetic axis and the biased material
wall. XGC can run in total-delta-f, and conventional
delta-f mode. The ion species are always gyrokinetic
except for ETG simulation. Electrons can be
adiabatic, massless fluid, driftkinetic, or gyrokinetic.

Source: https://xgc.pppl.gov/html/general_info.html

• Two species
• Ions easy to solve
• Electrons hard to solve
• Banded matrix structure
• Non-symmetric, need BiCGSTAB
• n = ~1,000
• nz = ~9,000

https://theory.pppl.gov/research/research.php?rid=10
https://xgc.pppl.gov/html/general_info.html

First experiences with Ginkgo’s batched iterative solvers in XGC

NVIDIA A100 GPU

First experiences with Ginkgo’s batched iterative solvers in XGC

Aditya Kashi, Pratik Nayak, Dhruva Kulkarni, Aaron Scheinberg, Paul Lin, and Hartwig Anzt. Batched sparse iterative solvers on gpu for the collision
operator for fusion plasma simulations. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 157–167. IEEE, 2022.

First experiences with Ginkgo’s batched iterative solvers in XGC

Status and open questions

• Individual system scheduling handled by GPU runtime.
• How can we tell the runtime to schedule harder problems first?
• How do we identify the harder problems?

• Extensions to monolithic problems by maximizing the cache usage and
aiming to cache the matrix in the L2/L3 cache.

• Has shown promise for medium size problems.

Library core contains
architecture-agnostic
factionality

Runtime polymorphism selects the right
kernel depending on the target architecture

Unit tests check
correctness

Architecture-optimized kernels

CORE
Infrastructure
Algorithms
• Iterative Solvers
• Preconditioners
• …

REFERENCE OpenMP CUDA HIP DPC++

