T & AT
TENNESSEE INNOVATIVE ==

KNOXVILLE COMPUTING LABORATORY Karlsruher Institut fiir Technologie

Batched Iterative Solvers in Plasma Fusion Simulations

JLESC 2023

Bordeaux, France
Isha Aggarwal Aditya Kashi Pratik Nayak Dhruva Kulkarni Paul Lin

Hartwig Anzt

Innovative Computing Lab, University of Tennessee

This research was supported by the Exascale Computing Project (17-SC-20-5C), a collaborative effort of the U.S.

“Js
Department of Energy Office of Science and the National Nuclear Security Administration, the Horizon2020 E (C \ ID H ELMHOLTZ
Program of the European Commission, and the Helmholtz Impuls und VernetzungsfondVH-NG-1241. . \"' L RESEARCH FOR GRA HAL

Motivation: Combustion simulations

PeleLM is a parallel, adaptive mesh refinement (AMR)
code that solves the reacting Navier-Stokes equations
in the low Mach number regime. The core libraries for
managing the subcycling AMR grids and
communication are found in the AMReX source code.

https://amrex-combustion.github.io/PeleLM/overview.html|

Problem Size Non-zeros (A) Non-zeros (L+U)
dodecane_lu 54 2,332 (80%) 2,754 (94%)
drm19 22 438 (90%) 442 (91%)
gril2 33 978 (90%) 1,018 (93%)
gri30 54 2,560 (88%) 2,860 (98%)
isooctane 144 6,135 (30%) 20,307 (98%)
lidryer 10 91 (91%) 91 (91%)

Imaginary part (x10~7)

Imaginary part (x10~7)

6
4 = 1.0
L
g X 2 x 05
£ £
01 wee - T 9 smses o 2 00 ®me
g >
° _2 ©
[=4 =
-2 -g ‘@ -0.5
g4 E
_ -1.0
4 -6
0.0 0.5 1.0 15 2.0 0.00 0.01 0.02 0.03 0.00 0.01 0.02 0.03
Log(10) real part Log(10) real part Log(10) real part
(2) dodecane_lu (b) drm19 (c) gril2
7.5{ ° 151 * 4
& g
5.0 L 10 s
S 2 2
2.5 X 05 X
t t
0.0 = 2 0.0 == ccowmmeme smones » oo T 0
i >
-2.5 2 -05 E
k=) G —2
-5.0 T _1.0 ©
£ E
-7.51 & 151 o 4
0.00 0.02 0.04 0.06 0.08 0.10 0.12 0 1 2 3 4 ~0.006-0.004-0.0020.000 0.002 0.004 0.006

Log(10) real part

(d) gri30

Log(10) real part

(e) isooctane

Log(10) real part

(f) lidryer

https://amrex-codes.github.io/amrex/
https://amrex-combustion.github.io/PeleLM/overview.html

Batched Iterative Solver Setting

* Many sparse problems of medium size have to be solved concurrently.
e ~50-2,000 unknowns, < 50% dense;
* All sparse systems may share the same sparsity pattern;
* An approximate solution may be acceptable (e.g., inside a non-linear solver);

Batched Iterative Solver Setting

* Many sparse problems of medium size have to be solved concurrently.
e ~50-2,000 unknowns, < 50% dense;
* All sparse systems may share the same sparsity pattern;
* An approximate solution may be acceptable (e.g., inside a non-linear solver);

* One solution is to arrange the individual systems on the main diagonal of one large system.
* Convergence determined by the “hardest” problem;
* No reuse of sparsity pattern information;
* Global synchronization points;

Batched Iterative Solver Setting

* Many sparse problems of medium size have to be solved concurrently.
e ~50-2,000 unknowns, < 50% dense;
* All sparse systems may share the same sparsity pattern;
* An approximate solution may be acceptable (e.g., inside a non-linear solver);

* One solution is to arrange the individual systems on the main diagonal of one large system.
* Convergence determined by the “hardest” problem;
* No reuse of sparsity pattern information;
* Global synchronization points;

* Better approach: design batched iterative solve functionality that solves all problems concurrently.
* Problem-dependent convergence accounted for;

* No global synchronization;
* Reuse of sparsity pattern information;
* Parallelize across individual problems;

Performance aspects of batched kernels

Implication for (dense) direct methods Implication for (sparse) iterative methods
1. Batched functionality is generally e Algorithm steps need to be merged * Interfacing external components via
memory-bound; into one kernel (e.g. Gauss-Jordan- main memory impacts performance;
Elimination for inversion); » All algorithm components have to be in-

lined in the kernel code;

Performance aspects of batched kernels

Implication for (dense) direct methods

Batched functionality is generally e Algorithm steps need to be merged
memory-bound; into one kernel (e.g. Gauss-Jordan-
Elimination for inversion);

Different problems have different « Different kernels for different
resource requirements; problem sizes;

Implication for (sparse) iterative methods

* Interfacing external components via
main memory impacts performance;

e All algorithm components have to be in-
lined in the kernel code;

e Sparse matrix memory needs unknown;
* Caching can only be use for const data;

* Shared memory space for intermediate
vectors unknown;

Performance aspects of batched kernels

Batched functionality is generally
memory-bound;

Different problems have different
resource requirements;

Different problems may result in
different algorithm behavior;

Implication for (dense) direct methods

e Algorithm steps need to be merged
into one kernel (e.g. Gauss-Jordan-
Elimination for inversion);

e Different kernels for different
problem sizes;

* Pivoting can result in some
branching in the kernel execution;

Implication for (sparse) iterative methods

* Interfacing external components via
main memory impacts performance;

e All algorithm components have to be in-
lined in the kernel code;

e Sparse matrix memory needs unknown;
* Caching can only be use for const data;

* Shared memory space for intermediate
vectors unknown;

* Need to monitor iterative solver
convergence for each problem
individually and complete early;

* Need to schedule problems
“appropriately”;

Performance aspects of batched kernels

== Ginkgo

r«—b—Ax.r+r,p—0,v<0
prelwela+1
for © < Njte, do
if ||r| < 7 then
Break
end if ® Green objects: Constant matrices or vectors (cache)
pr-7
B« L2
; o
p—r+ [(p—wv)
p < PRECOND(p)
v Ap
a — £
S+ 1r—av
if ||s|| < 7 then
T T+ ap
Break
end if
§ < PRECOND(S)
t+ AS
w4 2
T T+ ap+ws
T 8—wt
plep
end for

® Red objects: Intermediate vectors in SpMV: High priority

® Blue objects: Other vectors: Low priority

First experiences with Ginkgo’s batched iterative solvers in XGC

XGC is a gyrokinetic particle-in-cell code, which
specializes in the simulation of the edge region of
magnetically confined thermonuclear fusion plasma.
The simulation domain can include the magnetic
separatrix, magnetic axis and the biased material
wall. XGC can run in total-delta-f, and conventional
delta-f mode. The ion species are always gyrokinetic
except for ETG simulation. Electrons can be
adiabatic, massless fluid, driftkinetic, or gyrokinetic.

Source: https://xgc.pppl.gov/html/general info.html!

* Two species

* lons easy to solve

* Electrons hard to solve

* Banded matrix structure

* Non-symmetric, need BiCGSTAB
* n="1,000

* nz= ~9,000

Imaginary part (x1073)

b - et e o
<, I.‘.f ’!. RET
-':.‘ ..:'-

101

-10

electron
ion

0.0

0.5 1.0
Log(10) real part

1.5

https://theory.pppl.gov/research/research.php?rid=10
https://xgc.pppl.gov/html/general_info.html

First experiences with Ginkgo’s batched iterative solvers in XGC

NVIDIA A100 GPU

Solve time (s)

0.010

0.008

0.006

0.004

0.002

species = electrons

1, AvATA"A"A"A ATAA"

A
I
I
I
{
"A‘;';VA A.AVA.KAvA
I
I
I
!
AAAAAAAAAAA
T
I
I
I
!
AAAAAAA AAAA
I
I
I
I
I
AAAAAA
100 200 300 400

batch size

Y

AR

500

A

i
I

I
/
A

species = ions
Matrix Format

o 4~ GSR
ELL
AAAAAA
AAAAAAANA AX
AAAAAAAAAAA
Adakaaa AAAL
AAALAAAAAAA
AAAAAA
600 100 200 300 400 500 600
batch size

Solve time (s)

First experiences with Ginkgo’s batched iterative solvers in XGC

1
: : a 10
: : : PR 222
-1 : i 2asated $650¢404
10 2 oY% 0000004000007 2000300 %0 0% 000000000
0006550 SPI L0213 00 ARSI :
Q““_ e S e
m
E
x 10
: : e
: : : : : A"ATATATATATATATATATATA ‘(‘U'
BN 00000000000008000008cNEE00s00000000E000000000000000000000000000000 Besessessscessscsssneee s eesesnscsssesssesalle eesss sin Ty e s sloes00ss
A‘A'A'@'A'AjA'A'A‘A'A'A{-{‘-’_’-' o _:_’;v':'_h,,"’ T =
: 44 Bad it : i
AvAvAvATATATACATATAYACA T OE T [0
BN : =
107 5 2
© i
£ 10
(e}
%)
(]
=
9
.A'A'A'A'A'A'A" E
-2
i 10
10

0 100 200 300 400 500 600
batch size

processor
—— Skylake
: —— V100
A _KeA ; ae—
03554000, 0 A100
eteenaiNeee MI100
solvertype_matrixformat
—&— bicgstab csr
A"AAvAvavaos, : — - H
#::;:; '5;1‘?:5,‘.:* .}: wiaens ®- bicgstab gll
A 4 sparse_direct csr
AT AR A AR -4 - dgbsv banded

A

A AYAYAYAAYA VA vA A s rA"A", E
. ATATAA """“A‘f" """A""'A'A"A'A~A

200 300 400 500 600
batch size

Aditya Kashi, Pratik Nayak, Dhruva Kulkarni, Aaron Scheinberg, Paul Lin, and Hartwig Anzt. Batched sparse iterative solvers on gpu for the collision
operator for fusion plasma simulations. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 157-167. IEEE, 2022.

First experiences with Ginkgo’s batched iterative solvers in XGC

XGC application

Picard iteration loop

Ginkgo
) . Ba}tched +600ms +650ms +700ms +750ms +800ms +850ms +900ms +950r
Views of matrix, linear Computed . . A — . . s e : . :
RHS, solution solver solution | e :

Replace CPU solvers with GPU solvers

+280ms +300ms +320ms +340ms +36(0ms | +380ms +400ms +420ms +440ms +460ms +480

a1 . [i]

-

- = ‘ll_'l 1_]

-

i 11 In

i \
EC'P
XGC collision operator solve LAPACK vs. Ginkgo: XGC pe459_d3d_EM_heatload test case R

e XGC ped459 d3d_EM heatload (Aaron’s test case; used for Summit, Perimutter and Crusher scaling studies)
e Preliminary study on 32 nodes of Perimutter (128 A100s)

o 2 poloidal planes (216k nodes per plane); 22.4M ptl/GPU, 89.6M ptl/node (ptl_num=700k)

o Ran 20 time steps, collisions calculated every other time step

per time step (s) F_COLLISON time reduction
dgbsv ginkgo B COL_F_PICARD STEP_SOLVE [l F_COLLISON-COL_F_PICARD_STEP_SOLVE
MAIN_LOOP 19.05 18.26 ¢
MAIN_LOOP-F_COLLISION 15.87 16.03
F_COLLISON 3.18 2.23 ’
F_COLLISON-COL_F_PICARD_STEP_SOLVE 2.37 2.18 E
COL_F_PICARD_STEP_SOLVE 0.82 0.05 g ‘
COL_F_SOLVER_CONVERT_BANDED 0.08 . 1
COL_F_SOLVER_DGBSV 0.53
® With CPU LAPACK dngV 0 LAPACK dgbsv ginkgo

o F_COLLISON is 17% of MAIN_LOOP time
o COL_F_PICARD_STEP_SOLVE is 24% of F_COLLISON time and 4.3% of MAIN_LOOP time
o COL_F_SOLVER_DGBSV is 66% of COL_F_PICARD_STEP_SOLVE
o COL_F_SOLVER_CONVERT_BANDED is 10% of COL_F_PICARD_STEP_SOLVE
e Replacing CPU LAPACK dgbsv by GPU Ginkgo
o COL_F_PICARD_STEP_SOLVE reduced from 0.82s to 0.046s per step; reduction of 94%
o F_COLLISON reduced from 3.18s to 2.23s per step; reduction of 30%
o MAIN_LOORP time reduced by 4.1%

Velocity grid: 33x39; matrices: 1287 rows

XGC collision operator solve performed on GPU

Status and open questions

CORE
Library core contains Infrastructure [¢ =
architecture-agnostic Algorithms -, i ln go
factlonahty Iterative Solvers

Preconditioners

Runtime polymorphism selects the right
kernel depending on the target architecture

Architecture-optimized kernels

REFERENCE OpenMP CUDA HIP DPC++
Unit tests check <ZNVIDIA. AMDA |nte|
v correctness 1 1 1 1
CI‘CD @,m -@lm -‘qm -@,m

Individual system scheduling handled by GPU runtime.
* How can we tell the runtime to schedule harder problems first?
* How do we identify the harder problems?

Extensions to monolithic problems by maximizing the cache usage and
aiming to cache the matrix in the L2/L3 cache.

Has shown promise for medium size problems.

Basic

Krylov solvers

Preconditioners

Functionality
SpMV
SpMM
SpGeMM
BiCG
BiCGSTAB
CG
CGS
GMRES
IDR
(Block-)Jacobi
ILU/IC
Parallel ILU/IC
Parallel ILUT/ICT
Sparse Approximate Inverse

OMP CUDA HIP DPC++
4 4 4 4

R

QAR e

Batched

Batched BICGSTAB
Batched CG
Batched GMRES
Batched ILU
Batched ISAI
Batched Jacobi

AMG

Sparse direct

Utilities

AMG preconditioner
AMG solver

Parallel Graph Match
Symbolic Cholesky
Numeric Cholesky
Symbolic LU

Numeric LU

Sparse TRSV
On-Device Matrix Assembly
MC64/RCM reordering
Wrapping user data
Logging

PAPI counters

QUARRKPQUE QALY e ae
QAR AL QUAQQPe A e aq

QALY Qe QP @ «

Qe Qe

{Q

UNDER DEVELOPMENT

& @

Q

Qe
QR
Qe

Nl
SUIRY

