

Lossy Compression and Mixed Precision Strategies for Memory-Bound Linear Algebra

PPAM 2022 Gdansk, Poland

<u>Hartwig Anzt</u> Innovative Computing Lab, University of Tennessee

This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration, the Horizon2020 Program of the European Commission, and the Helmholtz Impuls und VernetzungsfondVH-NG-1241.

Arithmetic Intensity [FLOP / Byte]

Arithmetic Intensity [FLOP / Value]

The memory wall

Compute performance grows faster than memory bandwidth.

M. Gates

Can we get the best of both worlds?

- For memory-bound algorithms, the arithmetic operations are free, can use high precision formats.
- Data access should be as cheap as possible, use reduced precision.
- In-Register Compression

Arithmetic Intensity [FLOP / value]

Memory Accessor for NVIDIA A100 GPU

Memory Accessor for NVIDIA A100 GPU

Memory Accessor for NVIDIA A100 GPU

T. Grützmacher

Use the memory accessor to boost performance

- Start from double precision algorithm
- Use memory accessor to store intermediate data in compressed form
- *Require double precision output accuracy*

Use the memory accessor to boost performance

- Start from double precision algorithm
- Use memory accessor to store intermediate data in compressed form
- *Require double precision output accuracy*
- Preconditioning

[1] G Flegar, H Anzt, T Cojean, ES Quintana-Ortí, "Adaptive precision block-Jacobi for high performance preconditioning in the Ginkgo linear algebra software," ACM Transactions on Mathematical Software (TOMS) 47 (2), 1-28.

[2] F Göbel, T Grützmacher, T Ribizel, H Anzt, "Mixed precision incomplete and factorized sparse approximate inverse preconditioning on GPUs," European Conference on Parallel Processing, 550-564.

• Multigrid

[3] Stephen F. McCormick, Joseph Benzaken, Rasmus Tamstorf "Algebraic error analysis for mixed-precision multigrid solvers", <u>https://arxiv.org/abs/2007.06614</u>
[4] M Tsai, N Beams, H Anzt, "Mixed precision algebraic multigrid on GPUs," PPAM 2022.

• Krylov solvers

[5] J Aliaga, H Anzt, T Grützmacher, E S Quintana-Ortí, A Tomás, "Compressed basis GMRES on high-performance graphics processing units", IJHPCA 2022

Mike Tsai

- Preconditioning iterative solvers.
 - Idea: Approximate inverse of system matrix to make the system "easier to solve": $P^{-1} \approx A^{-1}$

and solve $Ax = b \iff P^{-1}Ax = P^{-1}b \iff \tilde{A}x = \tilde{b}$.

- Block-Jacobi preconditioner is based on block-diagonal scaling: $P = diag_B(A)$
 - Each block corresponds to one (small) linear system.
 - Larger blocks typically improve convergence.
 - *Larger* blocks make block-Jacobi more expensive.

- Preconditioning iterative solvers.
 - Idea: Approximate inverse of system matrix to make the system "easier to solve": $P^{-1} \approx A^{-1}$

and solve $Ax = b \iff P^{-1}Ax = P^{-1}b \iff \tilde{A}x = \tilde{b}$.

- Block-Jacobi preconditioner is based on block-diagonal scaling: $P = diag_B(A)$
 - Each block corresponds to one (small) linear system.
 - Larger blocks typically improve convergence.
 - Larger blocks make block-Jacobi more expensive.
- Why should we store the preconditioner matrix P^{-1} in full (high) precision?
- Use the accessor to store the inverted diagonal blocks in lower precision.
 - Be careful to preserve the regularity of each inverted diagonal block!

E.S. Quintana-Orti

- Choose how much accuracy of the preconditioner should be preserved in the selection of the storage format.
- All computations use double precision, but store blocks in lower precision.

- + Regularity preserved;
- + Flexibility in the accuracy;
- + "Not a low precision preconditioner"
 - + Preconditioner is a constant operator;
 - + No flexible Krylov solver needed ;

Overhead of the precision detection

(condition number calculation);

- **Overhead** from storing **precision information**

(need to additionally store/retrieve flag);

- Speedups / preconditioner quality problem-dependent;

Linear System Ax=b with cond(A) $\approx 10^7$ (apache2 from SuiteSparse) NVIDIA A100 GPU

```
Double Precision CG + Double Precision Preconditioner

Initial residual norm sqrt(r^T r):

%%MatrixMarket matrix array real general

1 1

1390.67

Final residual norm sqrt(r^T r):

%%MatrixMarket matrix array real general

1 1

3.97985e-06

CG iteration count: 4797

CG execution time [ms]: 2971.18
```

```
Single Precision CG + Single Precision Preconditioner

Initial residual norm sqrt(r^T r):

%%MatrixMarket matrix array real general

1 1

1390.67

Final residuat norm sqrt(r^T r):

%%MatrixMarket matrix array real general

1 1

1588.77

CG iteration count: 8887

CG execution time [ms]: 2972.46
```

Experiments based on the Ginkgo library <u>https://ginkgo-project.github.io/</u>

ginkgo/examples/adaptiveprecision-blockjacobi/adaptiveprecision-blockjacobi.cpp

Linear System Ax=b with cond(A) $\approx 10^7$ (apache2 from SuiteSparse) NVIDIA A100 GPU

```
Double Precision CG + Double Precision Preconditioner

Initial residual norm sqrt(r^T r):

%%MatrixMarket matrix array real general

1 1

1390.67

Final residual norm sqrt(r^T r):

%%MatrixMarket matrix array real general

1 1

3.97985e-06

CG iteration count: 4797

CG execution time [ms]: 2971.18
```

Double Precision CG + Mixed Precision Preconditioner

- Preconditioner remains a constant operator
- Attainable accuracy of CG unaffected
- Faster because of less data movement

Experiments based on the Ginkgo library https://ginkgo-project.github.io/

ginkgo/examples/adaptiveprecision-blockjacobi/adaptiveprecision-blockjacobi.cpp

Linear System Ax=b with cond(A) $\approx 10^7$ (apache2 from SuiteSparse) NVIDIA A100 GPU

```
Double Precision CG + Mixed Precision Preconditioner
  Double Precision CG + Double Precision Preconditioner
 Initial residual norm sqrt(r^T r):
                                                           Initial residual norm sqrt(r^T r):
 %%MatrixMarket matrix array real general
                                                           %%MatrixMarket matrix array real general
 1 1
                                                           1 1
 1390.67
                                                           1390.67
 Final residual norm sqrt(r^T r):
                                                           Final residual norm sqrt(r^T r):
 %%MatrixMarket matrix array real general
                                                           %%MatrixMarket matrix array real general
 1 1
                                                           1 1
 3.97985e-06
                                                           3.98574e-06
 CG iteration count:
                            4797
                                                           CG iteration count:
                                                                                      4794
                            2971.18
 CG execution time [ms]:
                                                           CG execution time [ms]:\2568.1
                                              16% runtime improvement
Experiments based on the Ginkgo library https://ginkgo-project.github.io/
                 ainkao/examples/adaptiveprecision-blockiacobi/adaptiveprecision-blockiacobi.cpp
```

1/24/23

Use the memory accessor to boost performance

Can we use the memory accessor to accelerate the algorithm without changing the final result?

- Yes, if we can do all operations in registers and write the final result in high precision.
- Not in general, if we read/write intermediate date in low precision.
- We need to analyze the error propagation and adapt the algorithms to the application & data.

Possibilities in the context of solving linear systems:

- Approximate linear operators / Preconditioners / Inner solvers;
- "Self-healing" iterative methods;

Rethinking Algorithms: Self-Healing Iterative Methods

- Krylov iterative solvers
- Krylov methods aim at approximating the solution to a linear problem in a subspace.
- Over the iterations, a nested sequence of Krylov subspaces is generated, adding one basis vector in each iteration.
- Orthonormalization ensures a orthonormal basis is formed (Classical Gram-Schmidt, Modified Gram Schmidt...).

 $K_0 \subset K_1 \subset K_2 \subset \dots$ $K_i(A, r) = span\{b, Ab, A^2b, \dots A^{i-1}b\}$

Rethinking Algorithms: Self-Healing Iterative Methods

- Krylov iterative solvers
- Krylov methods aim at approximating the solution to a linear problem in a subspace.
- Over the iterations, a nested sequence of Krylov subspaces is generated, adding one basis vector in each iteration.
- Orthonormalization ensures a orthonormal basis is formed (Classical Gram-Schmidt, Modified Gram Schmidt...).

 $K_0 \subset K_1 \subset K_2 \subset \dots$ $K_i(A, r) = span\{b, Ab, A^2b, \dots A^{i-1}b\}$

Rethinking Algorithms: Self-Healing Iterative Methods

- Krylov iterative solvers
- Krylov methods aim at approximating the solution to a linear problem in a subspace.
- Over the iterations, a nested sequence of Krylov subspaces is generated, adding one basis vector in each iteration.
- Orthonormalization ensures a orthonormal basis is formed (Classical Gram-Schmidt, Modified Gram Schmidt...).

Compressed Basis (CB-) GMRES

- Use double precision in all arithmetic operations;
- Store Krylov basis vectors in lower precision;
 - Search directions are no longer DP-orthogonal;
 - Hessenberg system maps solution to "perturbed" Krylov subspace;
 - Additional iterations may be needed;
 - As long as the loss-of-orthogonality is moderate, we should see moderate convergence degradation;

 $K_0 \subset K_1 \subset K_2 \subset \dots$ $K_i(A, r) = span\{b, Ab, A^2b, \dots A^{i-1}b\}$

Compressed Basis (CB-) GMRES

- Krylov iterative solvers
- Krylov methods aim at approximating the solution to a linear problem in a subspace.
- Over the iterations, a nested sequence of Krylov subspaces is generated, adding one basis vector in each iteration.
- Orthonormalization ensures a orthonormal basis is formed (Classical Gram-Schmidt, Modified Gram Schmidt...).

Compressed Basis (CB-) GMRES

- Use double precision in all arithmetic operations;
- Store Krylov basis vectors in lower precision;
 - Search directions are no longer DP-orthogonal;
 - Hessenberg system maps solution to "perturbed" Krylov subspace;
 - Additional iterations may be needed;
 - As long as the loss-of-orthogonality is moderate, we should see moderate convergence degradation;

Compressed Basis GMRES

Compressed Basis GMRES

 CB-GMRES using 32-bit storage preserves DP accuracy (SP-GMRES does not)

Compressed Basis GMRES

 CB-GMRES using 32-bit storage preserves DP accuracy (SP-GMRES does not)

- Speedups problem-dependent
- Speedup Ø1.4x (for restart 100)
- 16-bit storage mostly inefficient

Integration into MFEM

Using the memory accessor to boost accuracy

Instead of improving the performance of memory-bound high precision algorithms, the memory accessor can be used to increase the accuracy of memory-bound low precision algorithms – at no cost.

Design

- Memory access in low precision (e.g. fp32);
- Computations in high precision (e.g. fp64);

Characteristics

- Performance of low precision BLAS;
- Higher accuracy than low precision BLAS;

Usage

- 1. Can replace low precision BLAS to increase accuracy;
- 2. Can replace high precision BLAS if information loss is acceptable; *(without having to deal with explicit mixed precision usage)*

Arithmetic Intensity [FLOP / value]

Accessor-BLAS: Replacing LP BLAS to improve accuracy

Accessor-BLAS: Replacing LP BLAS to improve accuracy

Accessor-BLAS: Replacing LP BLAS to improve accuracy

Summary and resources

- For memory-bound algorithms, mixed precision can boost performance through reduced data movement.
- Memory accessor allows to compress data in main memory but do all arithmetic in high (double) precision.
- Approximate operators (preconditioners, lower multigrid levels) and self-healing iterative methods can accept/compensate information loss.
- Memory-bound low precision algorithms can increase accuracy at no cost.

Accessor-based GEMV and DOT available as open-source code: https://github.com/ginkgo-project/accessor-BLAS

Mixed Precision block-Jacobi preconditioning: https://github.com/ginkgo-project/ginkgo/tree/develop/examples/adaptiveprecision-blockjacobi

Mixed Precision Iterative Refinement: <u>https://github.com/ginkgo-project/ginkgo/tree/develop/examples/mixed-precision-ir</u>

Compressed-Basis GMRES: https://github.com/ginkgo-project/ginkgo/tree/develop/examples/cb-gmres

Let's try harder

- IEEE 754 fp64 in arithmetic operations
- More sophisticated in-register compression
 - Custom formats
 - Compression techniques (SZ, ZFP)
- Store data in compressed format

POSIT (UNUM	III)
-------------	------

sign regime exponent fraction		Size [bits]	IEEE exponent size [bits]	Approx. IEEE dynamic range	Approx. Posit dynamic range	Posit exp. bits
bit bits bits bits	Dynamic Range	16	5	$[6\cdot 10^{-8}, 7\cdot 10^4]$	$[1\cdot 10^{-17}, 7\cdot 10^{16}]$	2
		32	8	$[1\cdot 10^{-45}, 3\cdot 10^{38}]$	$[8\cdot 10^{-37}, 1\cdot 10^{36}]$	2
		64	11	$[5 \cdot 10^{-324}, 2 \cdot 10^{308}]$	$[2 \cdot 10^{-75}, 5 \cdot 10^{75}]$	2
$+ 256^{\circ} \times 2^{\circ} \times (1 + 221/256)$						
John L. Gustafson	Special values	• IEEE defines ± 0 , $\pm \infty$ and NaN (quiet and signaling) as special values • A lot of NaN representations (fp32 has $2^{24} - 1 \approx 10^7$ different NaNs) • Posit only has 2: 0 and NaR • NaR (Not a Real) is used as an error- value (like NaN and $\pm \infty$)				
	Gradual over- and underflow	 IEEE supports gradual underflow with subnormal numbers (fraction has an implicit 0.) No support for gradual overflow 			 Posit supports both gradual over- and underflow through the regime The farther away from 1.0, the fewer fraction bits 	

Using POSIT as memory format

Unum Type III John L. Gustafson

T. Grützmacher

Using POSIT as memory format

Unum Type III John L. Gustafson

T. Grützmacher

Using POSIT as memory format

NVIDIA A100

T. Grützmacher

Using ZFP / SZ compression as memory format

F. Capello R

R. Underwood T. Grützmacher

Using ZFP / SZ compression as memory format

1D sine function

Using ZFP / SZ compression as memory format

🗰 SZ3

🕂 ZFP

---- No compression

1e-01 1e-02 1e-03 1e-04 1e-05 1e-06 1e-07 1e-08 1e-09 1e-10 1e-11 1e-12 1e-13 1e-14 1e-15 1e-16

Pointwise absolute error bound

1D sine function

10²

10⁰

10-2

 10^{-4}

 10^{-6}

10-8

 10^{-10}

DOT error

1/24/23

Let's try harder

- IEEE 754 fp64 in arithmetic operations
- More sophisticated in-register compression
 - Custom formats
 - Compression techniques (SZ, ZFP)
- Store data in compressed format

Trade-off:

- Aggressive compression comes with larger information loss
- Element-wise compression allows only for moderate compression ratios
- Block-wise compression makes random access difficult
- Register count limits the block size (hardware specific)
- Data-dependent compression efficiency