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“Then” - Before ECP
LICL

e 2013-16, | am PostDoc in Jack Dongarra’s ICL at UTK and
lucky to be part of a collaboration project with SNL exploring ICMJQNM@:JME

the development of sparse linear algebra for NVIDIA GPUs.

MAGMA SPARSE
MAGMA-sparse as a “child” of MAGMA
explores the development of sparse
linear algebra for NVIDIA GPUs.

+ Plenty of research freedom
+ Plenty of opportunities to publish
+ No deliverables or deadlines

- Uncertain funding future
- Writing software is not the main scope
- “who cares what | am doing”

Extreme-scale Algorithms & Solver Resilience (EASIR)

Architecture-aware Algorithms for
Scalable Performance and Resilience
on Heterogeneous Architectures
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* In 2015/16, funding for software development is uncertain and
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a proposal for the US Exascale Computing Project.
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* In 2015/16, funding for software development is uncertain and
| apply for an early career grant in Germany and participate in
a proposal for the US Exascale Computing Project.

e In 2016, | receive the early career award and ECP becomes
reality.

| am torn between the options and chose: Both.
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“Then” - Before ECP
LICL

e 2013-16, | am PostDoc in Jack Dongarra’s ICL at UTK and
lucky to be part of a collaboration project with SNL exploring LMQM%&YOE
the development of sparse linear algebra for NVIDIA GPUs.

* In 2015/16, funding for software development is uncertain and
| apply for an early career grant in Germany and participate in
a proposal for the US Exascale Computing Project.

e In 2016, | receive the early career award and ECP becomes
reality.

| am torn between the options and chose: Both.

And | start a new sparse linear algebra library:
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The Design of an ECP Math Library

MAGMA-sparse as a “child” of MAGMA
explores the development of sparse
linear algebra for NVIDIA GPUSs.

Design considerations for Ginkgo E}glldmg Trusted Scientific Software

[ W IAEN B S|
Software Verification

» Platform Portability

» Performance

» Rapid integration of new algorithms I%Ecé‘i\/g
. xSDK / E4S Community Policies g
 BSSw expertise / experience 3 st

* Modern C++

« CI/CD and unit testing

» Open source & permissive licensing

I have worked in the scientific sof field for more than |
phras

g,

& Think Locally, Act Globally: Outreach for
| Better Scientific Software

Exascale Computing Project (ECP) software development teams ive outreach to the
broader community of computational scientists and engineers (CSE) in

high-performance

computing (HPC)

phrase to memory in void confusion when the dis
An ambitious goal
The needs to deliver a software environment and applications rea
N

Pairing internal and external concerns p

Verification focuses on internal concerns of a good softwal

velopment effort. Recognizing the challen

ect 10 help scient
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The Design of an ECP Math Library

CORE
Libﬁﬁl'l[fthore Contair;'s Infrastructure .-- G- k
. arcnitecture-agnostic orithms
MAGMA-sparse as a “child” of MAGMA factionalty © Agorihm INKgOo
p « lterative Solvers
explores the development of sparse . Preconditioners
linear algebra for NVIDIA GPUs. Runtime polymorphism selects the right
kernel depending on the target architecture
Design considerations for Ginkgo REFERENCE - —
b Platform Portablllty Unit tests check <2n‘"DIA'
Performance correctness
ormance | oo o
» Rapid integration of new algorithms CI‘CD O e
+ xSDK/E4S Community Policies 200,000 .
« BSSw expertise / experience —y e
* Modern C++ g
« CI/CD and unit testing 100,000
* Open source & permissive licensing S e
L . . §
Before the first line qf code is |'/vr/tten., we === —  — ——
spend a year on whiteboard discussions. Year

\\ EXASCALE
COMPUTING
\ PROJECT




The Design of an ECP Math Library

CORE
Libﬁé_llfy core contains Infrastructure x G- k
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MAGMA-sparse as a “child” of MAGMA factionality Nt Soivers Inkgo
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linear algebra for NVIDIA GPUs. Runtime polymorphism selects the right 2 o g
kernel depending on the target architecture " s?ccj =
S BICGSTAB @
DeS|gn CO”SlderatlonS fOf' GlnkgO REFERENCE OpenMP CUDA g Eis Z
Z oMRes @
* Platform Portability Unit tests check <INVIDIA S A =
. P rf correctness 1 g— :LBllJt:Ic:-)Jacom @
e Ormance . . ) -‘qm ..... -‘f]"“"“ ..... 1 ‘.E Parallel ILU/IC @
« Rapid integration of new algorithms CI Co e T——

« xSDK/E4S Community Policies 200,000
« BSSw expertise / experience

* Modern C++ g
 CI/CD and unit testing 5 100,000
* Open source & permissive licensing S e
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The Design of an ECP Math Library

MAGMA-sparse as a “child” of MAGMA
explores the development of sparse
linear algebra for NVIDIA GPUSs.

Design considerations for Ginkgo

» Platform Portability

» Performance

» Rapid integration of new algorithms
« xSDK/E4S Community Policies

« BSSw expertise / experience

* Modern C++

« CI/CD and unit testing

» Open source & permissive licensing

Before the first line of code is written, we
spend a year on whiteboard discussions.

ECP

EXASCALE
COMPUTING
PROJECT

CORE
Library core contains Infrastructure x B
architecture-agnostic Algorithms et Glnkgo
factionality

Iterative Solvers
Preconditioners

Runtime polymorphism selects the right
kernel depending on the target architecture

Architecture-optimized kernels
REFERENCE OpenMP CUDA HIP

Unit tests check <2 NVIDIA. AMDA

correctness

CI‘CD - Jﬁ@!m '''' 1-;.,.,“ .... 1

200,000
- Ginkgo

150,000
s @ ’xSDK
] av
% 100,000 ‘ Spack
w
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£
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2018 2019 2020 2021 2022 2023
Year

Basic

Preconditioners  Krylov solvers

Functionality
SpMV
SpMM
SpGeMM
BiCG
BiCGSTAB
cG
CGS
GMRES
IDR
(Block-)Jacobi
ILU/IC
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Parallel ILUT/ICT
Sparse Approximate Inverse
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The Design of an ECP Math Library

MAGMA-sparse as a “child” of MAGMA
explores the development of sparse
linear algebra for NVIDIA GPUSs.
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Platform Portability

Performance

Rapid integration of new algorithms
xSDK / E4S Community Policies
BSSw expertise / experience
Modern C++

CI/CD and unit testing

Open source & permissive licensing

Before the first line of code is written, we
spend a year on whiteboard discussions.

CORE
Library core contains Infrastructure x B
architecture-agnostic Algorithms SN Glnkgo
factlonallty « lterative Solvers

Preconditioners

Runtime polymorphism selects the right
kernel depending on the target architecture

Architecture-optimized kernels

REFERENCE OpenMP CUDA HIP
Unit tests check <2 NVIDIA. AMDA
correctness 1 1
I‘CD -@,m -@,m .... -iqm ,,,,, 4
200,000
- Ginkgo
150,000 ’
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o xSDK
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Speeding up MFEM's “example 22" on GPUs

2018 2019 0‘20 20‘2 1 forced oscillation imposed at the boundary. In this test, we use variant 1:
Year -V - (aVu) — w?bu + iweu = 0
witha=1,b=1,w =10,c=20

Speedup for Ginkgo CB-GMRES vs MFEM

Real part of solution (i
imaginary part of sol

Ginkgo-MFEM integration wrappers in MFEM. CUDA 10.1/V100 and ROcm 4.0/MI50.

Example 22 of the MFEM finite element library solves harmonic oscillation problems, with a

(top),
lution

DOF in mesh
Speedup of Ginkgo's Compressed Basis-GMRES solver vs MFEM’s GMRES solver for three
different orders of basis functions (p), using MFEM matrix-free operators and the
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MAGMA-sparse as a “child” of MAGMA
explores the development of sparse
linear algebra for NVIDIA GPUSs.

Design considerations for Ginkgo

» Platform Portability

» Performance

» Rapid integration of new algorithms
« xSDK/E4S Community Policies

« BSSw expertise / experience

* Modern C++

« CI/CD and unit testing

» Open source & permissive licensing

Before the first line of code is written, we
spend a year on whiteboard discussions.

ECP

EXASCALE
COMPUTING
PROJECT

Library core contains
architecture-agnostic

factionality

CORE
Infrastructure
Algorithms

Iterative Solvers
Preconditioners

Runtime polymorphism selects the right
kernel depending on the target architecture

REFERENCE (o)
Unit tests check
correctness

I‘CD -

penMP

== Ginkgo

Architecture-optimized kernels

CUDA

<A NVIDIA.

HIP
AMDA

DPC++

intel

d o @o—d @o—d

200,000
- Ginkgo
150,000~
(]
T
o
O
& yhmtsai [ try_oneapi Privee @Unwach 2~ Y Fork 0
<> Code ( bssues 1IN Pulrequests © Actions [ Proiects @ Securty [ Wsights
P e+ 0 G0 PR - I
yhmtsai format update 2 O 70 commies
I ang_struct 2 yoars ax
m aomic a

B check_unint

B dasscal_csr
| dnto
| coop_cuda

| coop_dratt

Spack

1

oneAPI

@ ‘250’(38
&

Industry Collaboration
with bi-weekly meetings

Basic

Preconditioners  Krylov solvers

Utilities

Functionality
SpMV
SpMM
SpGeMM
BiCG
BiCGSTAB
cG
CGS
GMRES
IDR
(Block-)Jacobi
ILU/IC
Parallel ILU/IC
Parallel ILUT/ICT
Sparse Approximate Inverse

On-Device Matrix Assembly
MC64/RCM reordering
Wrapping user data
Logging

PAPI counters

MP CUDA HIP DPC++
2 2 2 2
2 @ @ @
4 2 4 4
4 2 2 4
2 2 4 4
(2 & (2 (4
(4 2 4 4
(4 & (4 4
(4 4 4 v
4 @ (4 4
2 2 2
(2 @ < <
@ 2 2 (C4
2 2 & «
@ & [ «
2
— & )
e — e —))




The Design of an ECP Math Library

MAGMA-sparse as a “child” of MAGMA
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linear algebra for NVIDIA GPUSs.
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MAGMA-sparse as a “child” of MAGMA
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Platform Portability
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Rapid integration of new algorithms
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BSSw expertise / experience
Modern C++
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Open source & permissive licensing
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Congratulations to Yu-Hsiang Mike Tsai from @KITKarlsruhe, in collaboration
with ICL's Natalie Beams and @HartwigAnzt! Their paper "Mixed Precision
Algebraic Multigrid on GPUs" took home a best paper award at PPAM2022.
ppam.edu.pl
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The Design of an ECP Math Library

MAGMA-sparse as a “child” of MAGMA
explores the development of sparse
linear algebra for NVIDIA GPUSs.

Design considerations for Ginkgo

» Platform Portability
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» Rapid integration of new algorithms
« xSDK/E4S Community Policies

« BSSw expertise / experience

* Modern C++

« CI/CD and unit testing

» Open source & permissive licensing

Before the first line of code is written, we
spend a year on whiteboard discussions.
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The Design of an ECP Math Library

MAGMA-sparse as a “child” of MAGMA
explores the development of sparse
linear algebra for NVIDIA GPUSs.

Design considerations for Ginkgo

» Platform Portability

» Performance

» Rapid integration of new algorithms
« xSDK/E4S Community Policies

« BSSw expertise / experience

* Modern C++

« CI/CD and unit testing

» Open source & permissive licensing

Before the first line of code is written, we
spend a year on whiteboard discussions.
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e XGC pe459_d3d_EM_heatload (Aaron’s test case; used for Summit, Perimutter and Crusher scaling studies)
e Preliminary study on 32 nodes of Perimutter (128 A100s)
o 2 poloidal planes (216k nodes per plane); 22.4M ptl/GPU, 89.6M pti/node (ptl_num=700k)
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per

e s

agbsy

ginkgo

MAIN_LOOP

19.05|

18.26

MAIN_LOOP-F_COLLISION

1587

16.03

F_COLLISON

318

223

F_COLLISON-COL_F_PICARD_STEP_SOLVE

237

218

|COL_F_PICARD_STEP_SOLVE

082

[

|COL_F_SOLVER_CONVERT_BANDED

008

coL_F_soLveR Deasv

053

e With CPU LAPACK dgbsv

o F_COLLISON is 17% of MAIN_LOOP time

o COL_F_PICARD_STEP_SOLVE is 24% of F_COLLISON time and 4.3% of MAIN_LOOP time
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The Design of an ECP Math Library

MAGMA-sparse as a “child” of MAGMA
explores the development of sparse
linear algebra for NVIDIA GPUSs.

Design considerations for Ginkgo

» Platform Portability

» Performance

» Rapid integration of new algorithms
« xSDK/E4S Community Policies

« BSSw expertise / experience

* Modern C++

« CI/CD and unit testing

» Open source & permissive licensing

Before the first line of code is written, we
spend a year on whiteboard discussions.
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11 NOW”

« Sustainable software design ready for the
addition of new backends.

* Numerous collaborations with DOE partners
and industry.

- Bi-weekly meetings with Intel
— regular meetings with AMD

« Significant interest from the computational
science community outside ECP:

HYTEG OpenV/FOAM

The Open Source CFD Toolbox

ZpreCICE
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11 NOW”

« Sustainable software design ready for the
addition of new backends.

* Numerous collaborations with DOE partners
and industry.

- Bi-weekly meetings with Intel
— regular meetings with AMD

« Significant interest from the computational
science community outside ECP:

HYTEG OpenV/FOAM

The Open Source CFD Toolbox

ZpreCICE

» Myself:
Started as Director of ICL
in August 2022.
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Lessons learnt from ECP

Earmarking roughly half the budget to Software & App development is a game changer.
— Central component for the success of ECP.
— This concept becomes the blueprint for other nations.

Workforce recruitment and workforce retention are the key to success in software development.
— Money does not write software. RSEs do. We need to create attractive career plans.

— Chips act foresees workforce shortage: we need to train the future workforce for research and industry
and invest in strategic cooperation between Universities and DOE Labs.

Anticipating the future in hardware development accelerates the porting process.
— Blueprints and early access systems both useful.
— Interaction with industry is mutually beneficial.

Management, tools, and strategic initiatives are important.
— Jira milestones and deliverables give projects and collaborative interactions a structure and timeline.
— Strategic focus groups bring experts together and create collaboration.
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