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The US Exascale Computing Project

| Rdvancing Scientific Discovery

A The ECP aims to ensure availability of the exascale computing ecosystem necessary for developing clean
energy systems, improving the resilience of our infrastructure, designing new materials that can perform in
extreme environments, adapting to changes in the water cycle, developing smaller and more powerful
accelerators for use in medicine and industry, and much more. Several projects focus on data-intensive
problems to enable effective use of the data streams from powerful scientific facilities, complex environmental
genomes, and cancer research (patient genetics, tumor genomes, molecular simulations, and clinical data).

Strengthening National Security

The ECP teams are also developing new applications for supporting the NNSA Stockpile Stewardship
Program, which is responsible for maintaining the readiness and reliability of our nuclear weapons
systems—without underground testing. Assessing the performance of weapons systems subject to hostile
environments and potential threat scenarios exceeds the capabilities of current HPC systems and codes. NNSA
application projects are focused on providing the sophisticated modeling and analysis tools needed to sustain the
U.S. nuclear deterrence.

/,/\’ Improving Industrial Competitiveness
el

W ‘/ Exascale systems will be used to accelerate research that leads to innovative products and speeds

L commercialization, creating jobs and driving US competitiveness across industrial sectors, such as the
emerging energy economy. To ensure alignment with US industry needs, the ECP is engaging senior

technology decision makers from among the country’s most prominent private sector companies.




The US Exascale Computing Project

Addressing a National Imperative

The Exascale Computing Project is an aggressive research, development, and deployment project
focused on delivery of mission-critical applications, an integrated software stack, and exascale
hardware technology advances.
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Vision: Exascale Computing Project (ECP) Lifts all U.S.
High Performance Computing to a New Trajectory
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The US Exascale Computing Project
US$4B — what is it spent on?

* 3 computers
- $600M each

- $400M to vendors for Design,
Path, Fast - Forward

21 Applications
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The US Exascale Computing Project
US$4B — what is it spent on?

* 3 computers
- $600M each

- $400M to vendors for Design,
Path, Fast - Forward

21 Applications

m Base Challenge Problem | [ Domain* | Challenge Problem |

Wind Energy
Nuclear Energy

Fossil Energy
Combustion
Accelerator Design

Magnetic Fusion
Nuclear Physics: QCD

Chemistry: GAMESS
Chemistry: NWChemEx

Extreme Materials

Additive Manufacturing

2x2 5 MW turbine array in 3x3x1 km® domain

Small Modular Reactor with complete in-
vessel coolant loop

Burn fossil fuels cleanly with CLRs
Reactivity controlled compression ignition
TeV-class 1022 times cheaper & smaller
Coupled gyrokinetics for ITER in H-mode

Use correct light quark masses for first
principles light nuclei properties

Heterogeneous catalysis: MSN reactions
Catalytic conversion of biomass
Microstructure evolution in nuclear matls

Born-qualified 3D printed metal alloys

Quantum Materials

Astrophysics
Cosmology
Earthquakes

Geoscience

Earth System

Power Grid

Cancer Research

Metagenomics

FEL Light Source
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AMD Based
(Up & running)

20 MW

Predict & control matls @ quantum level
Supernovae explosions, neutron star mergers

Extract “dark sector” physics from upcoming
cosmological surveys

Regional hazard and risk assessment

Well-scale fracture propagation in wellbore
cement due to attack of CO,-saturated fluid
Assess regional impacts of climate change on the
water cycle @ 5 SYPD

gt [ ing under
underfrequency response

Scalable machine learning for predictive
preclinical models and targeted therapy

Discover and ize
through genomic and proteomic analysis

Protein and molecular structure determination
using streaming light source data

Intel Based

(Up & running)

40 MW
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Sustainable software development

Compilers
PMR Core (17) and Support (7)
auo openarc
Papyrus Kitsune
sicM LLYM
Legion CHILL autotuning comp
Kokkos (support) LLVM openMP comp
RAJA OpenMP V &V
CHAI Flang/LLVM Fortran comp
PaRSEC*
DARMA
GASNet-EX
Qthreads
BOLT
UPC#++
MPICH
Open MPI
Umpire
AML

Tools and
Technology (1)

TAU

HPCToolkit

Dyninst Binary Tools
Gotcha

Caliper

PAPI

Program Database Toolkit
Search (random forests)
Siboka

c2c

Sonar

XxSDK (16)
hypre

FleSCI

MFEM
Kokkoskernels
Trilinos
SUNDIALS
PETSCITAO
libEnsemble
STRUMPACK
SuperlU

ForTrilinos

Visualization Analysis
and Reduction (9)

ParaView
Catalyst
VTK-m

sz
2
Visit
ASCENT

Cinema
ROVER

il

lﬁi |

EXASCALE
COMPUTING
PROJECT

AMD APU Based

(panned)

Data mgmt, /O Services, Ecosystem/E4S
Checkpoint restart (12) ~ at-large (12)
SCR mpiFileUtils
FAODEL TrBITS
ROMIO MarFS
Mercury (Mochi suite) ~ GUFI
HDF5 Intel GEOPM
Parallel netCDF BEE
ADIOS FSEFI
Darshan Kitten Lightweight Kernel
UnifyCR COOLR
VeloC NRM
loss ArgoContainers
HXHIM Spack

PMR

Tools ( g3

Math Libraries Legend |

Data and Vis V4

Ecosystems and delivery



A few words about myself

* Born and raised in Karlsruhe
* PhD in Numerical Mathematics from KIT

» Focus on computational linear algebra
and high performance computing (HPC)

» Linear solvers, preconditioners, ...
 During my PostDoc at the University of
Tennessee, | developed MAGMA sparse
MAGMA SPARSE

MAGMA-sparse as a “child” of
MAGMA explores the development of
sparse linear algebra functionality for
NVIDIA GPUs.

MATLAB

Limitations:

C code with hand-written build system

Sparse unit testing

Focus on NVIDIA GPUs

Design-specific limitations (flexibility/extensibility)



Designing

IDEAS

productivity

better
scientific
software

: i INUY

an ECP math library

Building Trusted Scientific Software

SHARE

AUTHOR  MIKE HER

1 have worked in the scientific software field for more tl
phrase "Verification is doing things right, and validation
phrase to memory in order to avoid confusion when the

Pairing internal and external concerns

Verification focuses on internal concerns of a good sof

>3

Software Verification

AUTHOR  ANSHY

In the realm of software, verification is often erroneot

erification for gaining confidence it

process by which the developers convinc:
it was designed to do. In scientific software this coul

numerica

stability, and efficacy of the method in the
expected results. Note that verification is limited to e

model specification, not that the model itself matche

validation process.

Think Locally, Act Globally: Outreach for

Better Scientific Software

SHARE

Helping code teams improve their software

challenge. In the IDEAS Produc

Exascale Computing Project (ECP) software development teams involves extensive outreach to the

and s

ity project, we have found that one of the keys to aiding the

broader community of computational scientists and engineers (CSE) in high-performance

computing (HPC).

PUBLISHED

An ambitious goal

The ECP needs to deliver a software environment and applications rea
computers, which are scheduled to be deployed starting in 2021. Achieving this goal entails a major,
large-scale software development effort Necngmzmg the challenges development teams will face,

the ECP is supporting the It

AUTHOR

DAVID BERNWOLDY ToPICS

BETTER SKILLS

y to run on exascale

110 help scientific researchers improve their

is no small

PERSONAL PRODUCTIVITY AND
SUSTAINABILITY




Designing software for performance, portability, & sustainability TLIT]
'Ginkcgo = A sparee. linear dlgebra horary for WPC
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Designing software for performance, portability, & sustainability TLIT]

N (Jinkq;o ~ A sparee. linear dlgebra horary for WPC

Distribution of ECP programming languages and models has F
changed over time

“~
Mahices A soe
adhal values

R Solvers 5-A Qy

J colve hnear 5y>kmb

Languages GPU Programming Models 2022
25
60 33%
&6 n2016 2
#2022 27%
1 15 21%
30 18%
10
20
) I s
. | -
Fortran C/C++ Python

Native GPU  Loop pragma Kokkos/RAJA  Co-design /

libraries
Many ECP applications started out using native GPU and loop pragma models before moving to
C++ abstractions and co-design libraries

-
EICIP = Evans TM, Siegel A, Dracger EW, of al. “A survey of software implementations used by application codos in the Exascale Computing
= Project.” The Journal of High ance Computing App 2022,36(1):5-12.

Lori Daichin, 05/22/2024



Designing software for performance, portability, & sustainability TLIT]
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Designing software for performance, portability, & sustainability TLIT]
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Designing software for performance portability, & sustainability TLIT]
(Jlnkcgo A spacse linear Algebea Worary for WPC
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Designing software for performance, portability, & sustainability TLIT]

3
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Linear Operator Interface

We express everything as Linear Operator.
Internally, we leverage C++ class inheritance.
* Applications can apply any functionality as a linear operator.

B

°C

Reference

%
Matrix-Vector Product Preconditioner (for matrix A ) Solver (for system Az = b) %m hmlsd\(kw\
e contbness of ‘l
ékp\“\m dog& 1
[ z:=A-b z:=M"1-b z:=5-b ] t - ophmged kernls ,'
M 1tx A"l S~A! II
Acchviedure speufic
M~ =TI(A) S =x(4) t I kel execule the
el Slgoritm on Aargek
atvlecue #2%
All of them can be expressed as ,/’
[ Application of a linear operator* (LinQp) L : F™ — F™ ] -
n},b(}\.{ NN " Qnhme, gymorphism
Auloma5c behCa : ‘@ stlecks Ihe nght kemel
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Designing software for performance portability, & sustainability TLIT]

(Jlnkcgo A spacse linear Algebea Worary for WPC

wnu(’x\ n C+
=\
Devdlopment procesd [ Mahices \ soe O QE&IUIC&
0 s AN achual values = 5 N
1 i gt ush new ) U erorce ke Ok
| tode Jo e it \‘JO\VUb S‘A e \
31 151 y epushory R lve hnear syslons M&dﬂmlg :
200,000 M des I
] (anhrs eggahon(0) O Z?Ldm :
§15°'°°° ppehne. sokomahcally blds @Qfﬂ I
2100»000 (ahe & s ket \ D Adhledure wllc
50,000 . kel Mll{-u\
| D"”. (hetk (orrednes by OpenMP | | AMDZ1 < Intel ak;mihmon Lx;d
° 201 2019 2020 ngfé 2022 2023 2024 mmh dﬂma nVIDIA a‘(}“‘u'hre °
by
Rontwers .;ppmve ’]\/h
O e, pdymorphisen
= Momahc benchmark s bt ‘,‘, selecks e g kel
@_ nedks. e cumongy
n0sh g depeting on . darg
=% Ginkgo wplemettahon JJJ e




Starting with the CUDA backend

Runtime polymorphism selects the rigk;t
kernel depending on the target architecture

CORE
Library core contains Infrastruct x -
architecture-agnostic o == Ginkgo
factionality E

REFERENCE

200,000

150,000

100,000

Lines of code

50,000

+ lIterative Solvers
Functionality

SpMV
SpMM
SpGeMM
BiCG
BiCGSTAB
CG

CGs
GMRES

« Preconditioners

Basic

OpenMP CUDA

Krylov solvers

Unit tests check <ANVIDIA. e

correctness 1 1
-
— -‘q —

(Block-)Jacobi

ILu/ic

Parallel ILU/IC

Parallel ILUT/ICT

Sparse Approximate Inverse

Preconditioners

oMp

LI T B S C R I

R Qe

CUDA

QR aeqe

— Gin

go

2018
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Time




Extending to AMD GPUs

~2 months

D bett
s
D software

Resources v

HOME > BLOG > Porting the Ginkgo Package to AMD's HIP

Porting the Ginkgo Package to AMD's

HIP Ecosystem

SHARE

In response to the expl

ik

in hardware

the ability to adopt new processor designs have become a central priority in realizing software
sustainability. In this blog article, we discuss the experience of porting CUDA code to AMD's
Heterogeneous-compute Interface for Portability (HIP).

PUBLISHED JUN 25,

CUDA

new

2020 AUTHOR

CUDA —

HARTWIG ANZT

ToPICS

Events About v

, hardware portability and

BETTER RELIABILITY TESTING

BETTER PLANNING DESIGN

CUDA components =

‘CUDA matrix I
CUDA factorization =
CUDA precond ==

CUDA solver |11

I CUDA solver.

new code

common solver [l

IP components I
HIP matrix I

-~ HIP factorization —
HIP precond =
HIP solver [1]

common CUDA

HIP

CORE
Library core contains Infrastructure

[ ¢ -
architecture-agnostic ) S ‘ ; k
3 : Al th
factionality gorithms 1n gO
+ lIterative Solvers .

«  Preconditioners Functionality

L SpMV
. @
Runtime polymorphism selects the right £ el
. . SpGeMM
kernel depending on the target architecture S
@
Architecture-optimized kernels € BICGSTAB
2 c6
REFERENCE OpenMP CUDA HIP 3 cos
S oMRES
. >
Unit tests check <ANVIDIA. AMDZ1 . IR .
V correctness § (ockc)acobi
& e
-~ — -~ =
-‘gmw« -‘gmw« -‘gmm S ParalleliLU/iC
CI/CD — S ParallelILUT/ICT
£ Sparse Approximate Inverse
—— Ginkgo
200,000
3 150,000
o
o
e
o
100,000
(1)
c
£
50,000
0
2018 2019 2020 2021 2022 2023 2024
Time

oMmp
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Input from the “first customer’

CORE
Library core contains - =
architecture-agnostic /:I rz:itzu;:re — Ginkgo
factionality E
Iterative Solvers
- Functionality OMP CUDA HIP
Preconditioners
o SpMV ¢ ¢ @
MFEM is a free, lightweight, scalable C++ library for finite element methods. Runtime polymorphism selects the right s zp::MMM : Z :
. B pGel
kernel depending on the target architecture [ BICS N B
Architecture-optimized kernels S BicoSTAB ¢ ¢ ¢
H [ u n e cc @ @ @
Speeding up MFEM’s “example 22" on GPUs REFERENCE OpenMP CUDA HIP 3 cos v ¢ @
Example 22 of the MFEM finite element library solves harmonic oscillation problems, with a S oMRES ¢ @ @
forced oscillation imposed at the boundary. In this test, we use variant 1: Unit tests check <ANVIDIA. AMDZ1 , DR ¢ @ @
< 5 (Block-)Jacobi 2 2 4
i v (avu) _ wzbu +jweu =0 v Correcmeis 1 1 E e ¢ @
] - 7 mw‘.J 7 sooneces 7 sooneces 3 ParallelILU/IC ¢ ¢ @
witha=1,b=1,w =10,c=20 CI‘CD @j— .@1— -@1— S ParallelILUT/ICT ¢ ¢ @
Z i £ SparseApproximatelnverse ¢ @ @
% 1 —= p—1(Vi00) e — Ginkgo
g 12 =k p=1(MI50) - 200,000
- . —=— p =2 (V100)
& 10 ke p =2 (MI50) 3 150,000
2 —— p =3 (V100 ’ 8
p =3 (MI50) o107 © 100,000
v B [
£
-
10 1(‘)5 IE]” Real part of solution (top), 50.000
@ imaginary part of solution
DOF in mesh
0
Speedup of Ginkgo's Compressed Basis-GMRES solver vs MFEM's GMRES solver for three 2018 2019 20200 2021 2022 2023 2024 - -
different orders of basis functions (p), using MFEM matrix-fr rators and th Time e
ifferent orders of basis functions (p), using a ee operators a e g MCS4/RCM reordering =
Ginkgo-MFEM integration wrappers in MFEM. CUDA 10.1/V100 and ROcm 4.0/MI50. Z  Wrapping user data ——v—
S Logging —x

PAPI counters €




Part of the xSDK effort

. e . CORE
xSDK: Extreme-scale Scientific Software Development Kit Library core contains Ifrastructure . .
architecture-agnostic ) i Glnk O
factionality SESiEs

Iterative Solvers

Preconditioners Functionality

o SpMV
Runtime polymorphism selects the right 3 zp::MMM
kernel depending on the target architecture B?C;
Architecture-optimized kernels g BICGSTAB
8 6
REFERENCE OpenMP CUDA HIP 3 cos
> S oMRES
; <2 NVIDIA. AMDZ1 IDR
xsdk-examples v.0.3.0 " Unit tests check £ (Block-)Jacobi
' 1 1 § nc
The xSDK provides infrastructure for and interoperability of a cIco @Ol @G-l e B i
collection of related and complementary software & sparse Approsimate Inverse
elements—developed by diverse, independent teams — Ginkdo
throughout the high-performance computing (HPC) community— 200,000
that provide the building blocks, tools, models, processes, and o
related artifacts for rapid and efficient development of high- g
quality applications. S 00,000
g
£
50,000
November 2022 xSDK community policies:
® 26 math libraries . 16 mandatory policies, 0
® 2 domain components . 8 recommended policies, 2018 2019 2020 Tzing; 2022 2023 2024 On-Device Matrix Assembly
) . . . &$ MC64/RCM reordering
ggnranﬁsgﬁ;og)ﬁgg’( * 4 Spack variant guidelines R
X . Available on Github S Logging
* Spack xSDK installer PAPI counters

https://xsdk.info/policies/
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https://xsdk.info/policies/

Extending to Intel GPUs

~12 months

i R4 .

© Hor w4
© Tec Preparing for the Arrival of Intel’s Discrete High-
Performance GPUs
© Secwors By Hartwig Azt
© COovID-19
March 23, 2021
© AMLDL

& yhmtsai | try_oneapi Prive DUmech 2 - Y Fok 0 % s 0
© Code © lsus 1) Pulrequess © Actons [ Promcts  © Securty [ tsights
P master + P 1banch ©0tgs Gowofie  Addfie~ [REETRgl About
yhmtsai format update. onAug7,2022 )70 commits
W g stnct we 2yowsago (0 Rescme
o Ostars
W aemc atomic and ot a yoars axx
© 2warching
W chack unint ¥ otns
W casscalcs
dnind Releases
W coop.cude bew "
W coop.dnen bew

CORE
Library core contains Infrastruct x -
architecture-agnostic e &= Ginkgo
factionality E

+ lIterative Solvers
« Preconditioners

Runtime polymorphism selects the rigk;t
kernel depending on the target architecture

Architecture-optimized kernels

REFERENCE OpenMP CUDA HIP SYCL
Unit tests check <ANVIDIA. AMDA |ntel
v correctness
CI‘CD
—— Ginkgo
200,000
3 150,000
o
o
e
o
¢ 100,000
1)
£
-
50,000
0
2018 2019 2020 2021 022 2023 2024
Time

Basic

Krylov solvers

Preconditioners

Utilities

Functionality
SpMV.
SpMM
SpGeMM
BiCG
BIiCGSTAB
c6
CGS
GMRES
IDR
(Block-)Jacobi
ILu/ic
Parallel ILU/IC
Parallel ILUT/ICT
Sparse Approximate Inverse

On-Device Matrix Assembly
MC64/RCM reordering
Wrapping user data
Logging

PAPI counters

OMP CUDA HIP | DPC++
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Extending to Intel GPUs

* Bi-Weekly technical meetings with Intel

* Long list of bug reports, feature requests, performance data discussions, documentation improvements ...

cuBLAS backend (and potentially other domains) fails with latest LLVM builds
#223

ELIET) mmeterel cpened this issue 22 days ago - 3 comments

8

mmeterel commented 22 days ago - edited ~ Contributor -+

Summary

A first observed in #219 many tests in cUBLAS backend is falling with latest LLVM builds.

Version

1 have tried LLVM commit: 66361038b63caaaeS66/c9648(5da50674222b83 and got the below tests failing (showing only a few
of them)

\ Major_TITAN RTX (Failed) @
Major_TITAN_RTX (Failed)

T Major_TITAN_RTX (Failed)

Major_TITAN_RTX (Failed)

1- 0
3 - BLAS/RT,
7 -

17 - BLAS/RT
19 - BLAS/RT/TamaxTes tSuite/TamaxTests RealDoublePrecision/Column

23 - BLAS/RT/

27 - a
35 - BLAS/RT,
o -

81 - BLAS/RT/ScalTestSuite/Scal Tests. RealSinglePrecision/Colum Major_TITANRTX (Failed)
85 - BLAS/RT/ScalTestSuite/Scall Major TITAN RTX (Failed)

Assignees

§ rmeteret

Labels

None yet

Projects

None yet

Milestone

No milestone

Development

No branches or pull requests

2panicipants

HS

From DPCPP AoT documentation, not clear:

e The options are also required at linking time? Unused in files without kernels?

e Any example of other projects integrating AoT in a CMake setup?

... but also docker image contributions and bug fixes!

tid % subgroup size >= 4 gives wrona divisinn |
(double) 1/a gives wrong result when the tid % subgroup si ginkgohub/oneapi:cuda11.6
For example, when a = 1.07338829563753890 DIGEST: sha256:Obcac16d79a75b183acldeafcda7S3365coeladded

1/a should be 0.9316293125835232

ST PUSHED

if (local_id == assign_id) { a = double(1)/a; }

0S/ARCH OMPRESSED SIZE C
linusiamdss 66368

22 days ago by yhmtsa

when assign_id < 4, Gen9 GPU stil give the correct result
when assign_id >= 4, Gen9 GPU gives wrong 0.93162935¢
1.0000000506

CPU has more worse result

Itis connected to optimizations (not reproducible with O0).
fp-specuation=off do not improve results
Ticket number: XDEPS-4031 ()

IMAGE LAYERS @

i ADD file ... in /

Jevcloud node Issue

0 ["bash"]

sycl-Is/clinfo does not give any ol
$001-n225, s011-n006

ENV NVARCH=x86_64.

no gpu on the nodes
s001-n232, s001-n233, s011-n008

Aithith ~am ie nat anracenhla An Inain

Intel Compiler (Fortran/C/C++/L0) - Intel Discrete GPU Accelerator - Joint Laboratory for System Evaluation (anl.gov)
hang_atomic_on_local

Ticket number: CMPLRLLVM-36572 (works in PVC, but still fails on ATS node)
related to driver not compiler self

GFlop/s

20000
18000
16000
14000
12000

Performance of DPC++ MAGMA SGEMM on Intel GPUs

E0 0-DPCH+ (MAGMA ker11)

“CroneMKL

«=DPC++ (MAGMA ker2)

Arcticus at ALCF
Intel Xe-HP GPU (Arctic Sound 2x)
7,680 x2 Cores @900 MHz

-

QO A @ AV
o PV
S S

FP32 peak 13,820 x2 GFlop/s

system to Aurora

© Exascale supercomputer at ANL

D GV
o @“y X
Matrix size (m=n=k)

FIX Cuga/nip packena iocauon +#4£ 19y

O Conversation 8 | o Commits 2 [ Checks 0 [ Fileschanged 16

yhmtsai commented on Aug 1 - ecited ~

Description

From inta}lvm#8407, it moves almost al headers from CLsycl o syc
Hollowed #199 way

make the header can use sycl* if they exist and allow the old intel Ivm
1aiso update the CLjsycl.hpp which are not changed before.

All Submissions

Do all unit tests pass locally? Attach a log. A It s a compiling issue.
Have you formatted the code using clang-format?

Bug fixes
Have you added rolovan regression tasts? A: It s compiing ssue.
Have you ncluded nformation on how to reproduce th ssue (ither ina
Githb isu0or i his PRI

Reproduce:

compile the latest inte Ivm and . itwill ot be headers
G yhmtsai added 2 comits 2 months ago

o T use the correct sye1 frer tncel/11vmsedar

o T fix the nissing sycl/sycl.hop assarer

’ emeteret commented on Aug

@yhmtsai Thanks for the PR.Is the description fzon syc1/CL to CL correct? My understanding i all header files moved

Contributor | ++-

Contrbutor ++»
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Assignees
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Portability as central design principle

CORE
Library core contains Infrastructure X -
architecture-agnostic Algorithms — Glnkgo
functionality + Iterative Solvers

Preconditioners

Runtime polymorphism selects the right
kernel depending on the target architecture

Architecture-optimized kernels

REFERENCE OpenMP CUDA HIP SYCL
Unit tests check @z NVIDIA. AMDA intel
V correctness J J J J
CT ( CO -%99*"“’-!5»‘95‘- -%?’QEQQJ?F?EF -%9399_!?@5? -%99@%!5.‘95%

This software design gives portability, performance, and sustainability.



Focus efforts as lightweight tool in ECP to address challenges TLM

%SDK CORE
Library core contains - =
‘ architecture-agnostic :I rz:itzu;:re — Ginkgo
factionality E

Focus efforts

Iterative Solvers

Preconditioners

* Mixed precision

* Address recent hardware trends (tensor cores, etc.)

Runtime polymorphism selects the rig};t
kernel depending on the target architecture

Architecture-optimized kernels

REFERENCE OpenMP CUDA HIP SYCL
. Unit tests check <INVIDIA. AMDA intel
* Batched Routines v correctness 1 1 1 1
* Address application requirements CTICD @G- @l @ L
—— Ginkgo /_\r_/r
200,000
3 150,000
S
5
»n 100,000
g
o}
50,000
0
2018 2019 2020 2021 2022 2023 2024
Time

Basic

Krylov solvers

Preconditioners

Utilities

Functionality
SpMV.
SpMM
SpGeMM
BiCG
BIiCGSTAB
c6
CGS
GMRES
IDR
(Block-)Jacobi
ILu/ic
Parallel ILU/IC
Parallel ILUT/ICT
Sparse Approximate Inverse

On-Device Matrix Assembly
MC64/RCM reordering
Wrapping user data
Logging

PAPI counters

OMP CUDA HIP DPC++
@ 2 @ 2
(2 (2 4 4
4 @ 2 2
2 2 4 2
(2 2 @ <
2 2 4 2
(4 (4 4 4
(2 (4 4 4
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Mixed precision focus effort
< NVIDIA.

C 10,000,000
Hloo SXM I .9 i i
© Sustained (streaming)
FP64 34 teraFLOPS O T Memory Bandwidth is falling
% e behind Peak FLOPS rates,
FP64 Tensor Core 67 teraFLOPS E but every other kind of
FPa2 ST EELOPS e 100000 mer.nory access is falling
8 behind even faster....
TF32 Tensor Core 989 teraFLOPS: .
(g 10,000
n-oatioTensor 1,979 teraFLOPS' c
Core o
=
FP16 Tensor Core 1,979 teraFLOPS' © G
-}
FP8 Tensor Core 3,958 teraFLOPS: o
g 100
INT8 Tensor Core 3,958 TOPS* 'S
()
GPU memory 80GB O 10
&
GPU memory —_
bandwidth 3.35TB/s ol
m 1

1990 1995 2000 2005 2010 2015 2020

. (Dense) Matrix Performance

> Vector Operation Performance
. Low Precision Performance

> High Precision Performance

Trends in the relative performance of floating-point arithmetic and several classes of
data access for select HPC servers over the past 25 years. Source: John McCalpin



Compute Performance [GFLOP / s]

NVIDIAA100

—— fp64
—¢-Tp32
---- Peak fp64 performance
---- Peak fp32 performance

100 101 102 103
Arithmetic Intensity [FLOP / Value]
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Compute Performance [GFLOP / s]

Matrix fp32

Matrix fp64

“

*

.

F“__-“________
L *

104 4

103 |

-
e

fp64
fp32

Peak fp64 performance
Peak fp32 performance

10°

10! 102

Arithmetic Intensity [FLOP / Value]

103
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Compute Performance [GFLOP / s]

Matrix fp32
L [ 11}
Matrix fp64

104 -

103 -

-

ry-bound operations
(sparse linear algebra)

a access in low precisia

- faster access

>mpute-bound oﬁéi‘&i

-

.

-
1
|

(dense finear

run arithmetic in low p
® faster because a

g |

-+
>

10°

10! 107

Arithmetic Intensity [FLOP / Value]

103
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Linear System Ax=b with cond(A) = 10’
( apache2 from SuiteSparse ) NVIDIA V100 GPU

Double precision GMRES

Initial residual norm Relative residual ~1012

sqrt(r™t r): 9670.36

Final residual norm

sqrt(r*T r): 9.6639%e-09
GMRES iteration count: 23271

GMRES execution time: 43801 ms

T

Single precision GMRES
Initial residual norm Relative residual ~107
sqrt(r™t r): 9670.36

Final residual norm

sqrt(r*T r): 0.00175464

GMRES iteration count: 25000
GMRES execution time: 27376 ms

~2x faster!

104 N
g —4— DP-GMRES
©
.'5 1072 1
(9]
g
2 1075 A
=

0 2000 4000 6000 8000 10000
Iteration

forward error = ( unit round-off ) * (linear system’s condition number)

N. Higham: Accuracy and stability of numerical algorithms. SIAM, 2002.
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Mixed precision focus effort

Traditionally, we use a strong coupling between the
precision formats used for arithmetic operations and

storing data.

Arithmetic Operations

IEEE 754 DP
Lossless Compression Lossy Compression
* Huffman encoding + Low precision
* 1277,1278 Memory Accessor * Custom formats
e SRR ST
Compressed Data
Memory Operations
o . 0
See Felix Liu’s thesis
Input Compute Output

AHP ADP o
_——— \
implicit - 'YDP Ysp
\ o
=]



¥ MGS-GMRES<fp64,fp64>

GMRES<fp64,fp64>
_ GMRES<fp64,ip32>
Compressed Basis (CB-) GMRES GMRES<fp64,fp16>
L . . . {) GMRES<fn64
* Use double precision in all arithmetic operations; ~ GMRES
» Store Krylov basis vectors in lower precision;
* Search directions are no longer DP-orthogonal; arithmetic precision memory precision
* Hessenberg system maps solution to “perturbed” 100t
Krylov subspace;
* Additional iterations may be needed; £
* Aslong as the loss-of-orthogonality is moderate, 2 105k
we should see moderate convergence degradation; g
8
°
1010t
o
£
o
Z
10-15 I | ]
0 500 1000 1500

Iteration number
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Linear System Ax=b with cond(A) = 10’
( apache2 from SuiteSparse ) NVIDIA V100 GPU

Double precision GMRES

Initial residual norm Relative residual ~1012

sqrt(r™t r): 9670.36
Final residual norm
sqrt(r*T r): 9.6639%e-09
GMRES iteration count
GMRES execution time:

Single precision GMRES
Initial residual norm Relative residual ~107
sqrt(r™t r): 9670.36

Final residual norm

sqrt(r*T r): 0.0017546
GMRES iteration counft:
GMRES execution time

N——

Compressed Basis GMRES
Initial residual norm
sqrt(r™t r): 9670.36

Final residual norm

sqrt(r*T r): 9.6591e-09
GMRES iteration count
GMRES execution time:

Relative resiJuaI ~1012

Accuracy of DP GMRES
Performance similar to SP GMRES

30



NVIDIA V100 GPU

GMRES<fp64,fp64>
O GMRES<fp32,fp32>

0000000 0009000000000
@)
| |

’OOOOOOOOOOOOOOOOOOOOQOOO
|

| |

0 o

o N
— o
—

WLIOU [enpisal paziewIoN

&
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CB-GMRES using 32-bit storage
preserves DP accuracy
(SP-GMRES does not)

Normalized residual norm

GMRES<fp64,fp64>
O GMRES<fp32,fp32>
GMRES<fp64,fp32>

T

NVIDIA V100 GPU

GMRES<fp64,fp16>
r {) GMRES<ip64,int32> T —
107° - — GMRES<fp64,int16> A ERm -+
. A e
F00000090800680060455455R00 00000%o0 00R@EC00000000
L 3% 19
O AS A < © A Q ¢ o
A T 1 A i
L VN TN T A N T I At
FOOVOOY o T o e
I GO 00 Dese ¢ 00 #v & 0 & A OBN
N I e ) ) O Y I I
SRR PO R0 d A& NN 040 % 2 XX FRPFHRR N S 3 Lo @ TR @ o
S S S S S LB SE R U™ el
SEBBAR BETB BB BB BB EISEE S ST & HREPES T NS X
> > N’ &% $
® N
Matrices
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O GMRES<fp32,fp32>

NVIDIA V100 GPU
GMRES<fp64,fp32>
GMRES<fp64,fp16>
r {) GMRES<ip64,int32> T -
g 10°F — GMRES<ip64,int16> A T -+
S " A e
= F00000090800680060455455R00 00000%o0 00R@EC00000000
CB-GMRES using 32-bit storage 3 0 N o o I %% ¢ 9§
[} r e - i
preserves DP accuracy o 10-10 75ﬂAAAA%Av %v @_ Ay D A 6l o4 L
(SP-GMRES does not) E 00000V o o AT — 5 a2
R GO 00 Dese ¢ 00 #v & 0 & A OBN
2 e e
25 —
A
Speedups problem-dependent ol + A
A
A v
Speedup @1.4x (for restart 100 58
peedup 014 S+ TS g 9 2398%8.5077. 5 vEox53%5
% $BITBYBIBRYFIRETS o 9BBY g oI T AR A ARS SASRR AR
16-bit storage mostly inefficient Se A oo © a
Qo 1 A +
&L ae***%***%****%*%*g;é A* 4 % « * X % % *****gi*%%****ﬁ
G o5 -
A LB T
== Ginkgo T ¥ A
AIiagaJI, Anzt H, GrUtzmacherT, Quintana— 0 e B ; [ ; T T ‘\\ | \‘\ [ \e) I N I |
: : ! . N .
8l\r;I|REESS' Zgrﬁiash_AE. rCfompressed baﬁys @g}g}ol\o}o}o;&\:‘\%\%%%\%%\%&Q&&% oégo&obi o %Q%o%b\;; & §j§%<o®;) @?9‘5?@@\@"\\9?@2 o /’:boobzq‘oo@\@@é & S5 A‘ZQC’(\
gh-performance grapnics QNI D/ X0 2 S I Zx 2 Ix 2 2n ok 2o "vé\oc" F LK OQQ/A@ \9&\0&\0\\000 O D 9073 SO A ?}((‘\\/QQ‘ZS
processing units. The International journal of S S A A ';&°,5§,§§°°’ N f’boﬁcﬁ;spo“o’o“ & FRREP S € %30 AR
High Performance Computing Applications. @ %&’ &
2022;0(0). doi:10.1177/10943420221115140 Matrices
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Mixed precision AMG on GPUs

* Preconditioning iterative solvers

* Idea: Approximate inverse of system matrix to make the system “easier to solve”: P71~ A}
andsove Az =0 < P l'Az=P % & Az=10

I NVIDIA AmgX (DP) B AMG (DP) 1 AMG (MP)
12

* Mixed Precision Multigrid Preconditioner

ms per iteration
(2]

smoothing hlgh Pr ecision
_—
-02-3 -03-13 -04-13 -03-14
MFEM beam with different setting
I NVIDIA AmgX (DP) W AMG (DP) 1 AMG (MP)

The Multigrid
V-cycle

14

Finest Grid 10.5

prolongation

c

S

\ restriction (interpolation) 2
£ 7

. . o

; low precision ¢
\ ’ E 35

Ay 7
AY 4
Note: \\ ,’ 0
smaller grid = s -03-17 -03-18 -04-18 -04-17
: Y MFEM L-shape with different setting
First Coarse Grid |j

Stephen F. McCormick, Joseph Benzaken, Rasmus Tamstorf: Algebraic error analysis for mixed-precision multigrid solvers, https://arxiv.org/abs/2007.06614



https://arxiv.org/abs/2007.06614

Mixed precision focus effort

CORE
Library core contains Infrastruct x -
architecture-agnostic :I rz:itLu;:re — Glnkgo
factionality E

+ lIterative Solvers
« Preconditioners

Runtime polymorphism selects the rigk;t
kernel depending on the target architecture

Architecture-optimized kernels

REFERENCE OpenMP CUDA HIP SYCL
Unit tests check <ANVIDIA. AMDA |ntel
AR PR PR . |
cIicD - — - — -
—— Ginkgo
200,000
3 150,000
o
o
e
o
¢ 100,000
1)
£
-
50,000
0
2018 2019 2020 2021 2022 2023 2024
Time

Functionality OMP CUDA HIP DPC++
o SpMV ¢ ¢ @ @
3 SpMM ¢ € @ @
SpGeMM 4 2 ¢ 2
«w BIiCG @ 2 2 2
S BicoSTAB ¢ ¢ ¢ @
% lce ¢ & ¢ @
3 cos ¢ ¢ ¢ @
S oMRES ¢ © ¢ @
IDR @ 2 4 2
E (Block-)Jacobi 2 2 & &
§ unc ¢ @ @
3 PanalleliLu/ic ¢ ¢ ¢ @
S ParallelILUT/ICT & 2 @ &
£ SparseApproximatelnverse ¢ @ @ @
o AMG preconditioner & & 2 2
§ AMG solver 2 (2 2 4
Parallel Graph Match & 2 [ 3
On-Device MatrixAssembly & & & &
§ MC64/RCM reordering 2
£ Wrapping user data e a—)
3 Logging v )]

PAPI counters




Batched focus effort — Combustion Simulations

Batched iterative solvers for SUNDIALS / PeleLM

PeleLM is a parallel, adaptive mesh refinement (AMR) code that
solves the reacting Navier-Stokes equations in the low Mach
number regime. The core libraries for managing the subcycling
AMR grids and communication are found in the AMReX source
code.

https://amrex-combustion.github.io/PeleLM/overview.html

Speedup w.r.t. dense direct solver

Problem Size  Non-zeros (A) Non-zeros (L+U)
dodecane_lu 54 2,332 (80%) 2,754 (94%) 3.0
drm19 22 438 (90%) 442 (91%) 204
gril2 33 978 (90%) 1,018 (93%)
gri30 54 2,560 (88%) 2,860 (98%)
isooctane 144 6,135 (30%) 20,307 (98%) 1.0
lidryer 10 91 (91%) 91 (91%)

0.5~

25.0 1
20.04

10.0 4

7.0
5.0

B richardson
= bicgstab
. gmres

dodecane_lu drm19

gril2
Problem

gri3o

isooctane

lidryer

Batched Sparse Iterative Solvers for Computational
Chemistry Simulations on GPUs

Isha Aggarwal ; Aditya Kashi; Pratik Nayak ; Cody J. Balos ; Carol S. Woodward ; Hartwig Anzt ~All Authors


https://amrex-codes.github.io/amrex/
https://amrex-codes.github.io/amrex/
https://amrex-combustion.github.io/PeleLM/overview.html

Batched focus effort — Fusion Plasma Simulations UM

XGC is a gyrokinetic particle-in-cell code, which specializes in
the simulation of the edge region of magnetically confined
thermonuclear fusion plasma. The simulation domain can
include the magnetic separatrix, magnetic axis and the biased
material wall. XGC can run in total-delta-f, and conventional
delta-f mode. The ion species are always gyrokinetic except for

ETG simulation. Electrons can be adiabatic, massless fluid,
driftkinetic, or gyrokinetic.

Source: https://xgc.pppl.gov/html/general info.html

101 & « electron
¥ o ion

* Two species
* lons easy to solve
* Electrons hard to solve
* Banded matrix structure
* Non-symmetric, need BiCGSTAB
= * n="1,000
‘ * nz= ~9,000

Imaginary part (x1073)
o

0.0 0.5 1.0 1.5
Log(10) real part

0 100 200 300 400 500 600 700 800 900 992


https://theory.pppl.gov/research/research.php?rid=10
https://xgc.pppl.gov/html/general_info.html

Batched focus effort — Fusion Plasma Simulations UM

Effective solve time per matrix (ms)

processor
- = Skylake

—— V100

e

solvertype_matrixformat
—&— bicgstab csr
-@- bicgstab ell
-4+ sparse_direct csr
-<4- dgbsv banded

"ATAATATATATAA

0 100 200 300 400 500 600
batch size

Aditya Kashi, Pratik Nayak, Dhruva Kulkarni, Aaron Scheinberg, Paul Lin, and Hartwig Anzt. Batched sparse iterative solvers on gpu for the collision
operator for fusion plasma simulations. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 157-167. IEEE, 2022.

XGC collision time reduction (64 nodes)

B Solvetime [ Restof collision time

timel/step (sec)

Perimutter LAPACK  Perimutter Ginkgo  Frontier LAPACK Frontier Ginkgo




Sparse direct solvers for power grid simulations TUT

Mathematical Formulation of the ExaSGD Core Challenge
Security constrained multiperiod AC optimal power flow analysis e
AN
Posed as an optimization problem: The optimization problem | E b
the underlying linear syst . \
Find " N\
min (X, Fy(x,) + generator fuel cost [ )
Xt Ytsk K1
+ sk Gesk (Xt + Vesk)) wind curtailment,
load shedding, K2
power imbalance, etc. K /
Subject to: - 3 = =
Hio(Xs Vi) = 0 flow definitions,
T power balance
QsiXp Yist) <0 bounds: generator power, Ky By || ¥ In
voltage, branch flow BIT BZT B3T BNT Ko x 7

RiXs Xs1) <0 generator ramping limit

* The characteristic block-arrow coupling structure can be exploited to decompose the optimization
problem, nevertheless there is no solver that can tackle this on a GPU-based architecture.

EXASGD © Slaven Peles




Sparse direct solvers for power grid simulations TLITI

Underlying KKT Linear System Properties

See Felix Liu’s thesis
 Security constrained optimal power flow analysis.

» The interior method strategy leads to symmetric indefinite linear systems

«10%
° T

L) N

0.5 \
Kk A:L‘k Tk } %\
-~ - \f'A\ /A\ r H
H+D, J Ay Ty T V. N T¥pical sparsity pfattern
= timal |
JT O 0f AN T ) 5 N\ foptimal power flow

structure that can be

. . used by linear solver.
o J-— sparse constraints Jacobian, 2 y
o H - sparse Hessian, T

o D, — arises from log-barrier function

0 05 1 15 2 25 3
x10°

» The challenge: we need to solve a long sequences of such systems.
EXASGD © Slaven Peles




Sparse direct solvers for power grid simulations

Grid Buses Generators Lines N(K%) nnz(Ky)

Northeastern US 25 K 4.8 K 323 K 108 K 1.19 M

Eastern US 70 K 104 K 88.2 K 296 K 3.20 M

Western and Eastern US 82 K 134K 1041 K 340K 3.73 M
m Hessian mConstraints m Constraint Jacobian = Other = Solve mFactorize

2

<&

8.6

‘z

(a) Northeast U.S. grid (b) Eastern U.S. grid

AN

3.5

(c) Eastern and Western U.S. grids

= ¢:\>{e1p)}| © Slaven Peles



Sparse direct solvers for power grid simulations

oo - :

Liner Solver Performance within Optimization Algorithm
Average per iteration times (including first iteration on CPU)

« Each GPU solution 1000 _
outperforms all CPU o Laeonze
baselines. 900 Other
800 ] Constra]Znt Jacobian
« Ginkgo performance improves ., = Constramts
on a better GPU. z
« |terative refinement g 500
configuration affects linear = 400
solver performance and 200 .
optimization solver o = 61 03 o2 23
convergence. .53 5
9 100 [ . 2. . N - BB
- Ginkgo is the first GPU- i iy ol
resident sparse direct linear MAS7 (P9) MAS7 (EPYC) cuSolverRf  cuSolverGLU Ginkgo (V100)  Ginkgo
SOlVGr. (V100) (V100) (MI250X)
.E (\E\ =F ) Multiple promising GPU-resident sparse linear solvers
(C

2. ¢:\{€1p}| © Slaven Peles



Now, after the completion of ECP

. . - CORE
- Sustainable software design ready for the addition Library core contains L CORE . )
of new backends. T iectine-aBnostie  garithms = Glnkgo

Iterative Solvers

. . Preconditioners

» EuroHPC Project MICROCARD uses Ginkgo .
Runtime polymorphism selects the right

kernel depending on the target architecture

S Architecture-optimized kernels
*ok ** REFERENCE OpenMP CUDA HIP SYCL
; 5 %}7‘;;;4 ) Unit tests check <ANVIDIA. AMDA intel
Joee S https://www.microcard.eu Ayt o 1 1 1 1
K MICROCARD S — S o
CI‘C D ‘q -‘q -‘q -‘q
« BMBF PDExa and ExaSIM projects use Ginkgo so0000, — Cinkao
OpenVFOAM  FRRREPNRERR CCEONekts g g,
The Open Source CFD Toolbox e oo ace :'_’
. T o 100,000
. . . I
« Companies are evaluating Ginkgo S
0
‘ Mathworksa g'é aWSy 2018 2019 2020 Tzi?nz; 2022 2023 2004

HUAWEI

Krylov solvers Basic

Preconditioners

AMG Batched

Sparse direct

Utilities

SpMV
SpMM

SpGeMM

BiCG

BiCGSTAB

o}

CGS

GCR

GMRES

FCG

FGMRES

IR

IDR

Block-Jacobi

ILU/IC

Parallel ILU/IC
Parallel ILUT/ICT
ISAI

Batched BiCGSTAB
Batched CG

Batched GMRES
Batched ILU

Batched ISAI

Batched Block-Jacobi
AMG preconditioner
AMG solver

Parallel Graph Match
Symbolic Cholesky
Numeric Cholesky
Symbolic LU

Numeric LU

Sparse TRSV
On-Device Matrix Assembly
MC64/RCM reordering
Wrapping user data
Logging

PAPI counters

v MPISupport
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https://www.microcard.eu/

Scalability of Ginkgo on Frontier (#1 TOP500, AMD MI250)

Weak scaling: problem size increases with parallel resources

TFLOP/s

10° -
102 -
101 -
100 .
1071 5
10—2 .
1073 4

1074 +

Weak scaling up to 8k AMD MI250 GPUs (16k GCDs)

27pt with csr-coo

T4t+¢

P

local_size

125
1000
10648
97336
1000000

10! 102 10°
Number of MI250 GCDs

10°

104

Efficiency w.r.t. 1 GPU

0.8 1

0.6 1

0.4 1

0.2 A1

27pt with csr-coo

T

local_size
125
1000
10648
97336
1000000

e

f4t+¢

102 103 104

Number of MI250 GCDs

10° 10!

Significant Compute Waste!




Scalability of Ginkgo on Frontier (#1 TOP500, AMD MI250)

Strong scaling: problem size increases with parallel resources

Time per lteration

Strong scaling up to 8k AMD MI250 GPUs (16k GCDs)

Strong Scaling - Bicgstab Local Jacobi

Strong Scaling - Cg Local Jacobi

—o— 32M —o— 32M
—¥— 256M —¥— 256M
—— 2B —— 2B
—< 16B —< 16B
Ic -
e e
c c
8 8
p— \ -
\ L \ L
v )
£ €
\ = \ =
\ \
\ \
\ \
\ \
\ \
\ \
\ \
\ \\ \ \\
\ \
10° 10! 102 103 104 10° 10! 102 103 104

Number of MI250 GCDs

Number of MI250 GCDs

T

Strong Scaling - Gmres Local Jacobi
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—¥— 256M
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Lessons learnt over the years TUTI

ECP earmarking roughly half the budget to Software & App development is a game changer.
— Central component for the success of ECP.
— This concept needs to — and does become - the blueprint for other nations, companies, and projects.

Workforce recruitment and workforce retention are the key to success in software development.
— Money does not write software. RSEs do. We need to create attractive career plans.
- We need to make research software development attractive to students. Academic recognition. Industry career
paths.

Anticipating the future in hardware development accelerates the porting process.
— Blueprints and early access systems both useful.
— Interaction with industry is mutually beneficial.

Management, tools, and strategic initiatives, interaction and collegial behavior are important.
— Jira/Notion/[...] milestones and deliverables give projects and collaborative interactions a structure and timeline.
- Strategic focus groups, conferences, and meetings bring experts together and create collaboration.
- Listen to the application needs. Value input and acknowledge collaborators.
Py \
—(CP =
e

PROJECT




