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Motivation

We are looking for a factorization-based preconditioner such that A ~ . - U
is a good approximation with moderate nonzero count (e.g. nnz(L 4+ U) = nnz(A)).
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Motivation

We are looking for a factorization-based preconditioner such that A ~ . - U
is a good approximation with moderate nonzero count (e.g. nnz(L 4+ U) = nnz(A)). .

*  Where should these nonzero elements be located?
How can we compute the preconditioner in a highly parallel fashion?

N

|

Y/ 4

3 05/22/2019 Hartwig Anzt: ParILUT - A Parallel Threshold ILU for GPUs




I D AN Y

Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)). .

e Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization

. Decompose system matrix into product A = L - U.

. Based on Gaussian elimination.

. Triangular solves to solve a system Ax = b:
Ly=b=1y = Ly=b==x

\

. De-Facto standard for solving dense problems.
| . What about sparse? Often significant fill-in...
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Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).

e Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization Incomplete LU Factorization (ILU)
. Decompose system matrix into product A = L - U. * Focused on restricting fill-into a
. Based on Gaussian elimination. specific sparsity patternS.

. Triangular solves to solve a system Ax = b:
Ly=b=y = Ly=b==x

. De-Facto standard for solving dense problems.
. What about sparse? Often significant fill-in...
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Motivation
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We are looking for a factorization-based preconditioner such that A ~ L - U

is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).

Where should these nonzero elements be located?

How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization Incomplete LU Factorization (ILU)

Decompose system matrix into product A = L - U. Focused on restricting fill-into a

Based on Gaussian elimination. specific sparsity patternS.

Triangular solves to solve a system Ax = b:
Ly=b=y = Ly=b==x

For ILU(0), S is the sparsity pattern of A.

*  Works well for many problems.
De-Facto standard for solving dense problems. * Is this the best we can get for nonzero count?
What about sparse? Often significant fill-in...
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Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).

e Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization Incomplete LU Factorization (ILU)
. Decompose system matrix into product A = L - U. * Focused on restricting fill-into a
. Based on Gaussian elimination. specific sparsity patternS.
. Triangular solves to solve a system Ax = b:
Ly=b=1y = Ly=b==x * For ILU(0), S is the sparsity pattern of A.
*  Works well for many problems.
. De-Facto standard for solving dense problems. * Is this the best we can get for nonzero count?
. What about sparse? Often significant fill-in...
X X X X X X * Fill-ininthreshold ILU (ILUT) bases S on the
X ox o significance of elements (e.g. magnitude).
% OO L « Often better preconditioners than 7
o oL L7 level-based ILU. //
XX . * Difficult to parallelize. /
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/tM:— Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).

e Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?

Rethink the overallstrategy!

e Use a parallel iterative process to generate factors.
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Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)). .

e Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?

Rethink the overallstrategy!

e Use a parallel iterative process to generate factors.

* The preconditioner should have a moderate number of nonzero elements,
but we don’t care too much about intermediate data.
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Motivation

Rethink the overallstrategy!

We are looking for a factorization-based preconditioner suchthat A~ L - U
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).

e ! 1 4

Where should these nonzero elements be located?

How can we compute the preconditioner in a highly parallel fashion?

Use a parallel iterative process to generate factors.

The preconditioner should have a moderate number of nonzero elements,
but we don’t care too much about intermediate data.

(", )

Select a set of nonzero locations.

1
2. Compute values in those locations such that A ~ L - U is a “good” approximation.

3. Maybe change some locations in favor of locations that result in a better preconditioner.
4

Repeat until the preconditioner quality does no longer improve for the nonzero count.

—
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...

x * x *x * * x *x x x *
x x *x x *x N N A
x x * x x *x *
* * e * % *
* x *x * * * *
x *x x *x N x *x *
ILU residual R = A - L X U
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...

* ot

D D D S o
>
b o S o
*
*
pr—
b o o o
*
*
b D S o
*
*

05/22/2019 Hartwig Anzt: ParILUT - A Parallel Threshold ILU for GPUs




e ! 1 4

Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...

* ot

*
b o S o
*
*
b D S o
*
*

* >t ot ot
%
—
Ut ot
%
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...

D D D S o
>
b o S o
*
*
X Xt X
*
*
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...

x * x *x * * x *x x x *
x x *x x *x N N A
x x * x x *x *
* * e * % *

ILU residual * N * * * ok

matrix pattern * X xox xox xox *
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

 This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. )

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

nnz(L + U) equations
nnz(L + U)variables

* ok K K * x ok X K * * * Kk Kk x *
* ok x Kk x * x Kk *x NE— * % * N
* x Kk Kk K K ol x o+ % * x x *
* K Kk % * I * I * x *
NE— *
MU *
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Considerations

?

/1.

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.
3. Maybe change some locations in favor of

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

Select a set of nonzero locations. \

locations that result in a better preconditioner.

This is an optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

This is the underlying idea of Edmond Chow’s parallel ILU algorithm?:
1 —1 . .
= {3 oo EETbn). 1>
’ i—1

Qij — D p—q likUkj, i< J

Converges in the asymptotic sense towards incomplete factors L, U
suchthat R=A—-L-U =0|s
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Considerations

J

Select a set of nonzero locations.

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

|

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘ |
i

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

* This isthe underlying idea of Edmond Chow’s parallel ILU algorithm?:

1 —1 . .
N

Qij — D p—q likUkj, i< J

Fixed-point sweep

* We may not need high accuracy here, ~ approximates
because we may change the pattern again... One single fixed-point sweep. el i ol
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeat until the preconditioner quality stagnates.

Fixed-point sweep
approximates
incomplete factors.
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeat until the preconditioner quality stagnates. |

* Maybe use the ILU residual as quality metric.

Compute ILU
residual & check

convergence.

Fixed-point sweep
approximates
incomplete factors.
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU

residual & check

\ 4. Repeatuntil the preconditioner quality stagnates. convergence.

* The sparsity pattern of A might be a good initial start for nonzero locations.

Fixed-point sweep
approximates
incomplete factors.
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Considerations

Select a set of nonzero locations. \

Identify locations
with nonzero ILU

2. Compute values in those locations such that

A~ L -U isa “good” approximation. residual.
3. Maybe change some locations in favor of
locations that It in a better preconditioner. Compute 1LY
ocations that resu a better preco oner. residual & check o
\ 4. Repeatuntil the preconditioner quality stagnates. convergence. P, .
O OOOO
* The sparsity pattern of A might be a good initial start for nonzero locations. "%
* Then, the approximation will be exact for all locationsSy = S(Lq + Up) oy

and nonzero inlocations S; = (S(A) U S(Lo - Uy)) \ S(Lo + Up)*.

Fixed-point sweep
approximates
incomplete factors.
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Considerations

Select a set of nonzero locations. \

Identify locations
with nonzero ILU

2. Compute values in those locations such that

A~ L -U isa “good” approximation. residual.
3. Maybe change some locations in favor of
| ti that It i bett diti Compute ILU
ocations that result in a better preconditioner. residual & check o
\ 4. Repeatuntil the preconditioner quality stagnates. convergence. P, .
O OOOO
* The sparsity pattern of A might be a good initial start for nonzero locations. "%
* Then, the approximation will be exact for all locationsSy = S(Lq + Up) , oy
and nonzero inlocations S; = (S(A4) U S(Lg-Up)) \ S(Lo + Up)t.
) ) ) ) ) Add locations to

* Adding all these locations (level-fill!) might be good idea... sparsity pattern of

incomplete factors.

Fixed-point sweep
approximates
incomplete factors.
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Considerations

Select a set of nonzero locations. \

Identify locations
with nonzero ILU

2. Compute values in those locations such that

A~ L -U isa “good” approximation. residual.
3. Maybe change some locations in favor of
locations that It in a better preconditioner. Compute 1LY
ocations that resu a better preco oner. residual & check o
\ 4. Repeatuntil the preconditioner quality stagnates. convergence. P, .
O OOOO
* The sparsity pattern of A might be a good initial start for nonzero locations. "%
* Then, the approximation will be exact for all locationsSy = S(Lq + Up) , oy

and nonzero inlocations S; = (S(A) U S(Lg - Uy)) \ S(Lo + Up)*.
Add locations to

* Adding all these locations (level-fill!) might be good idea, but adding these sparsity pattern of
will again generate new nonzero residuals So = (S(A) U S(L1-Uy)) \ S(L1 + Us) incomplete factors.

Fixed-point sweep
approximates
incomplete factors.

b S S S S o
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Considerations

Select a set of nonzero locations. \

. . Identify locations
2. Compute values in those locations such that with nonzero ILU

A~ L -U isa “good” approximation. residual.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU
residual & check ©

convergence. ®q

\ 4. Repeatuntil the preconditioner quality stagnates. ‘ .

* At some point we should remove some locations again, e.g. the smallest elements, 9%
and start over looking at locations R = A — Ly - Uy, ... 5

Remove smallest Add locations to
elements from sparsity pattern of
incomplete factors. incomplete factors.

Select a threshold Fixed-point sweep
separating smallest approximates
elements. incomplete factors.
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Considerations

Select a set of nonzero locations. \

. . Identify locations
2. Compute values in those locations such that with nonzero ILU

A~ L -U isa “good” approximation. residual.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU
residual & check ©

convergence. ®q

\ 4. Repeatuntil the preconditioner quality stagnates. ‘ .

* At some point we should remove some locations again, e.g. the smallest elements, 9%
and start over looking at locations R = A — Ly - Uy, ... 5

* We need another sweep, then...
Remove smallest Add locations to

elements from sparsity pattern of

incomplete factors. incomplete factors.

Select a threshold Fixed-point sweep
separating smallest approximates
elements. incomplete factors.
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ParlLUT

Interleaving fixed-point sweeps approximating values Identify locations

with pattern-changing symbolic routines. Withrzg’izzrlo ILu

Fixed-point sweep Compute ILU
approximates residual & check ©
incomplete factors. convergence. g
&
CbO

ParlLUT cycle | i

Add locations to
sparsity pattern of
incomplete factors.

Remove smallest
elements from
\ incomplete factors.

\

i SS':. E@.:.
'@.é@:':. .':.é%.‘- \
I . . . N
° &, Select a threshold Fixed-point sweep 5 o, N\
| "@-:-3"'@% separating smallest approximates e, 3
| iy elements. incomplete factors. '@é@@:@é}
i "::':;E. "::-@Eg@:.

—
\"b'...“
1

4\ .
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CG lterations

ParlLUT quality

—IC(0)

—ICT i
——ParlCT
50 r 1
40 1
30 1
20 1
10 1
0 1 1 1 1
0 2 4 6 8 10

Number of ParlCT steps (2 sweeps per step)

Top-level solver iterations as quality metric.

Few sweeps give a “better” preconditioner than ILU(O).

Better than conventional ILUT?
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Anisotropic diffusion problem
n: 741, nz: 4,951
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ParlLUT quality

Anisotropic diffusion problem
n: 741, nz: 4,951

T T T — 10 [
—I1C(0) Q
—ICT 1 » 9
——ParlCT o sl
[0}
B o
g 7}
2
@50 1 2
S o 6
© o
T 40" 7 g O
(—5 %)
O30+ 1 o
s 3|
o
20 s
= 2f
(O]
107 ] € 1]
>
Z
0 1 1 1 1 O 1 1 1
0 2 4 6 8 10 0 500 1000 1500
Number of ParICT steps (2 sweeps per step) ILU(0) Pattern discrepancy ILUT

* Top-level solver iterations as quality metric.
* Few sweeps give a “better” preconditioner than ILU(O).

e Better than conventional ILUT?
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ParlLUT quality

Anisotropic diffusion problem
n: 741, nz: 4,951

T T T 10 T T
—1C(0) g ——ParlCT
—ICT || w 9f 1
——ParlCT o ol |
(2]
| )
8 7t 1
2 5 R n
5 ~ Bf ’
© )
40 j 2 5 f
(—5 »
O30 - O 4 |
s 3} 1
20| =
- 2F B
(O]
107 ] € 1] —
>
0 1 1 1 1 Z O 1 1 1
0 2 4 6 8 10 0 500 1000 1500
Number of ParICT steps (2 sweeps per step) ILU(0) Pattern discrepancy ILUT
* Top-level solver iterations as quality metric. » Pattern converges after few sweeps.
* Few sweeps give a “better” preconditioner than ILU(O). * Pattern “more like” ILUT than ILU(O).

e Better than ILUT?
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Interleaving fixed-point sweeps approximating values
with pattern-changing symbolic routines.

Fixed-point sweep
approximates
incomplete factors.

Remove smallest
elements from
incomplete factors.

. .
.......
.....
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Select a threshold
separating smallest
elements.

ParILUT — A Parallel Threshold ILU for GPUs

Identify locations
with nonzero ILU
= [VEIR

ParlLUT cycle

Fixed-point sweep
approximates
incomplete factors.

Compute ILU
residual & check
convergence.

Add locations to

sparsity pattern of
incomplete factors.
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Interleaving fixed-point sweeps approximating values Ider t'f/ lnceticns
with pattern-changing symbolic routines. SHHLE

111
(270043,

Ccrndinie ‘LU
residlinil ¢z check

Pl

CIAL2ZERALZ,

Fixexl- poini «vv2ep
cEEradnines

INCLiAD £i2 fa20rS.

Parallelism inside the building blocks:

* Fixed-Point Sweeps! J
ParlLUT cycle

. Residualle

Reniove tina’last
e Identify Fill-In LocationszJ eeriznisinim
inccriget: faziors.
e Add LocationszJ

« Remove LocationszJ
(&

* Select Threshold Separating Smallest Elements C-\

Adid > iions o
spaisity pieitterr of
INCO A jA2 A, 2CLIrs.

Selz:11theshold
sepaletirgirnallest
1Chow et al. “Asynchronous Iterative Algorithm for Computing Incomplete A ENNANS,

Factorizations on GPUs”. InISC 2015.
2Anzt et al. “ParlLUT — A new parallel threshold ILU”. In: SIAM J. on Sci. Comp. (2018).

Fixid ok gcinhvaep
SO NiES

IncLingaiz fiz0rs.
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Threshold Selection on GPUs

This is equivalent to the Selection Problem!

Given an unsorted sequence of real numbers
T, T1,22,T3, ... Tn—1, we want to find the
element z;, such that inthe sorted sequence

Tipg STj, S Xjy, K Tjg <<, <...7;

!

k

the element x;, is located in position k.

We do not necessarily need to sort the complete sequence!

Approximate and Exact Selection on GPUs

Tobias Ribizel*, Hartwig Anzt*f
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
TInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA
tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU
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Threshold Selection on GPUs

This is equivalent to the Selection Problem! SampleSelect Algorithm

Given an unsorted sequence of real numbers Pick splitters m

Zo,T1,22,T3,..-Tn—1, we want to find the I
' Sort splitters 0 [

element z;, such that inthe sorted sequence P

T < < ap < ap. < e < <.y mmmm ||||
io S Tiyp S Tiyg S Tig S = T“c = tn—1 Group by bucket

k Select bucket f
the element x;, is located in position k.
Pick splitters T
We do not necessarily need to sort the complete sequence!
Sort splitters nnl
Approximate and Exact Selection on GPUs Group by bucket Ml

Tobias Ribizel*, Hartwig Anzt*f
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
TInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA
tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu

http://bit.ly/SampleSelectGPU
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Parallelization & Communication of SampleSelect on GPUs

Global Memory Atomics Shared Memory Atomics

|

i
0 S N B |
Thread Block Thread Block Thread Block ]:I:r:I]:I:H [D:-:D ‘:i:l:l:l:ﬂ ;

(RENERNRNE) ttitte114 t1tt111114 |

Thread Block Thread Block Thread Block

[

* Run SampleSelect using all resources on complete data set;
e Use global atomics to generate bucket counts;

Global Atomics]

511525354 |S5S5|S6|S7]|58

* Split data set into chunks, assign to thread blocks;
* Eachthread block runs bucket count on its data;
* Use aglobal reduction to get global bucket counts;
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-g : global memory atomics
-s: shared memory atomics

Global vs. Local Memory Atomics

le9 lel0
5 J{=2— sample-g single precision 4{ —F sample-s ¥
—¥— sample-s —— quick-s
4 1 % quick-g __—§— quick-g
—H— quick-s 3 —A— sample-g

throughput (elements / s)
throughput (elements / s)

3
2
NVIDIA K40 NVIDIA V100
1 -
=
2i6 2i8 2I20 2I22 2I24 256 2I28 2i6 2i8 2I20 2I22 2I24 256 2I28
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Approximate and Exact Selection on GPUs!

SampleSelect Algorithm We do not descent to the lowest level of the recursion

mm tree if we accept an approximate threshold.
Pick splitters

* Accuracy depends on the ratio splitters vs. dataset size;

- "I I | o |
Sort splitters * Independent of value distribution (works on ranks, only); |
Group by bucket m:ﬂ[[[[ﬂﬂﬂ]]ﬂﬂm lell NVIDIA V100 GPU
Select bucket t __0.8- 128 buckets
wn : A :
Pick splitters N b 0.6 512 buc Schsbuckets
g : 1024 buckets
Sort splitters (L 9 J
@
w1 5047/
Group by bucket a P
s
202 -k Approximate selection
Approximate and Exact Selection on GPUSs 5| Le- Exact selection
Tobias Ribizel*, Hartwig Anzt*f 0.0 T T T
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany 0.0 0.2 0.4 0.6 0.8
fInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA relative approximation error (|result—exact| %)

tobias.ribizel @ student.kit.edu, hartwig.anzt@kit.edu
Approximate selection on 228 uniformly distributed single precision
values using 1 recursion level, only.

http://bit.ly/SampleSelectGPU
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ParILUT - A Parallel Threshold ILU for GPUs

Impact of exact/approximate SampleSelect on ParILUT preconditioner quality

ANI5
C( T T T T
300 —ILU(0) 1
A\ -% ParlLUT-GPU w. exact Sampleselect |
2R = ParlLUT-GPU w. approx. Sampleselect |-
%) 250 r \ b
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2200 [ \.\ 1
i e
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G 150 - A\ |
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zx.\Q
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ParlLUT steps
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ParILUT - A Parallel Threshold ILU for GPUs

Impact of exact/approximate SampleSelect on ParlLUT runtime breakdown

NVIDIA V100 GPU

—
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Matrices taken from Suite Sparse Matrix Collection.
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ParILUT - A Parallel Threshold ILU for GPUs

ParlLUT performance across different GPU generations: 15t bar: NVIDIA K40
2"d bar: NVIDIA P100
34 bar: NVIDIA V100
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Matrices taken from Suite Sparse Matrix Collection.
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ParIlLUT Performance across architectures
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Matrices taken from Suite Sparse Matrix Collection.
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xt Steps ...

Hybrid ParlILUT version utilizing GPU and CPU,
overlapping communication & computation.

Asynchronous version relaxing dependencies.

Use a different sparsity-pattern generator:
e Randomized?

* Machine learning techniques?

Increasing fill-in towards “full” factorization.

ParILUT routines available in MAGMA-sparse —they will be in Ginkgo.

This research was sponsored by:

"—T\\ ) U.S. DEPARTMENT OF
=CP ) ENERGY

EXASCALE COMPUTING PROJECT

_ _ Office of Science
The Exascale Computing Project

A Collaborative effort of the U.S. Department of u.s. Depa rtment of Energy

Energy Office of Science And the National ASCR Award Number DE-SC0016513
Nuclear Security Administration

SKIT

Karlsruher Institut fur Technologie

http://bit.lv/ParILUTGPU E

THE UNIVERSITY OF

TENNESSEE

KNOXVILLE

HELMHOLTZ

RESEARCH FOR GRAND CHALLENGES

Helmholtz Impuls und Vernetzungsfond
VH-NG-1241
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Test matrices

Matrix Origin SPD  Num. Rows Nz  Nz/Row
ANIS 2D anisotropic diffusion yes 12,561 86,227 6.86
ANIO 2D anisotropic diffusion yes 50,721 349,603 6.89
ANI7 2D anisotropic diffusion yes 203,841 1,407,811 6.91
APACHEL Suite Sparse [10] yes 80,800 542,184 6.71
APACHE2 Suite Sparse yes 715,176 4,817,870 6.74
CAGE10 Suite Sparse no 11,397 150,645 13.22
CAGEL1 Suite Sparse no 39,082 559,722 14.32
JACOBIANMATO Fun3D fluid flow [20] no 90,708 5,047,017 55.64
JACOBIANMAT9 Fun3D fluid flow no 90,708 5,047,042 55.64
MAJORBASIS Suite Sparse no 160,000 1,750,416 10.94
TOPOPTO10 Geometry optimization [24] yes 132,300 8,802,544 66.53
TOPOPTO60 Geometry optimization yes 132,300 7,824,817 59.14
TOPOPT120 Geometry optimization yes 132,300 7,834,644 59.22
THERMALI1 Suite Sparse yes 82,654 574,458 6.95
THERMALZ Suite Sparse yes 1,228,045 8,580,313 6.99
THERMOMECH_TC Suite Sparse yes 102,158 711,558 6.97
THERMOMECH_DM  Suite Sparse yes 204,316 1,423,116 6.97
TMT_SYM Suite Sparse yes 726,713 5,080,961 6.99
TORSO?2 Suite Sparse no 115,967 1,033,473 8.91
VENKATO1 Suite Sparse no 62,424 1,717,792 27.52
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Convergence: GMRES iterations

ParILUT
Matrix no prec. | ILU(0) | ILUT 0 1 2 3 4 5
ANIH 882 172 78 278 161 105 84 74 66
ANIO 1,751 391 127 547 315 211 168 143 131 |
ANI7 3,499 828 290 | 1,083 641 459 370 318 289 |
CAGE10 20 8 8 9 7 8 8 8 8 |
CAGE11 21 9 8 9 7 7 7 7 7
JACOBIANMATO 315 40 34 63 36 33 33 33 33
JACOBIANMAT9 539 66 65 110 60 55 54 53 53
MAJORBASIS 95 15 9 26 12 11 11 11 11
TOPOPTO10 2,399 565 303 835 492 375 348 340 339
TOPOPTO60 2,852 666 397 963 584 445 417 412 410
TOPOPT120 2,765 668 396 959 584 445 416 408 408
TORSO2 46 10 7 18 8 6 7 7 7
VENKATO1 195 22 17 42 18 17 17 17 17
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Convergence: CG iterations

ParICT
Matrix no prec. | 1C(0) ICT 0 1 2 3 4 5
ANIH 951 226 — 297 184 136 108 93 86
ANIG 1,926 621 - 595 374 275 219 181 172
ANIT7 3,895 | 1,469 — 1 1,199 753 559 455 405 377
APACHE] 3,727 368 331 | 1,480 933 517 321 323 323
APACHE2 4,574 | 1,150 785 | 1,890 1,197 799 766 760 754
THERMALI 1,640 453 412 626 447 409 389 385 383
THERMAL2 6,253 | 1,729 | 1,604 | 2,372 1,674 1,503 1,457 1,472 1,433
THERMOMECH_DM 21 8 8 8 7 7 7 7 7
THERMOMECH_TC 21 8 7 8 7 7 7 7 7
TMT_SYM 5,481 | 1,453 | 1,185 | 1,963 1,234 1,071 1,012 992 1,004
TOPOPTO10 2,613 692 331 845 551 402 342 316 313
TOPOPTO60 3,123 871 — 988 749 693 1,116 — —
TOPOPT120 3,062 886 — 991 837 784 2,185 — —
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