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Accelerating Fusion Plasma Collision Operator Solves with Portable, Batched Iterative Solvers on GPUs

How to make Research Software Faster Better Harder Stronger -
Lessons learnt from the US Exascale Computing Project
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The US Exascale Computing Project

RAdvancing Scientific Discovery

The ECP aims to ensure availability of the exascale computing ecosystem necessary for developing clean
energy systems, improving the resilience of our infrastructure, designing new materials that can perform in
extreme environments, adapting to changes in the water cycle, developing smaller and more powerful
accelerators for use in medicine and industry, and much more. Several projects focus on data-intensive
problems to enable effective use of the data streams from powerful scientific facilities, complex environmental
genomes, and cancer research (patient genetics, tumor genomes, molecular simulations, and clinical data).

Strengthening National Security

The ECP teams are also developing new applications for supporting the NNSA Stockpile Stewardship
Program, which is responsible for maintaining the readiness and reliability of our nuclear weapons
systems—without underground testing. Assessing the performance of weapons systems subject to hostile
environments and potential threat scenarios exceeds the capabilities of current HPC systems and codes. NNSA
application projects are focused on providing the sophisticated modeling and analysis tools needed to sustain the
U.S. nuclear deterrence.

M Improving Industrial Competitiveness

| Mg . . .

m ‘/ Exascale systems will be used to accelerate research that leads to innovative products and speeds
commercialization, creating jobs and driving US competitiveness across industrial sectors, such as the

emerging energy economy. To ensure alignment with US industry needs, the ECP is engaging senior

technology decision makers from among the country’s most prominent private sector companies.
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The US Exascale Computing Project TUTI

Addressing a National Imperative

The Exascale Computing Project is an aggressive research, development, and deployment project
focused on delivery of mission-critical applications, an integrated software stack, and exascale
hardware technology advances.

Application 0 Software o Hardware & 0 P
Development Technology Integration

H—— : © Paul Messina in 2016

Vision: Exascale Computing Project (ECP) Lifts all U.S. 1
High Performance Computing to a New Trajectory
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The US Exascale Computing Project

= 3 computers. (~2B) . —— ™
- $600M each o || L el _ s ll“fﬂh
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AMD (- Kiamid

= $400M to vendors for Design, AMD Based Intel Based AMD APU Based
_ (Up & running) (Up & running) (panned)
Path, Fast - Forward 20 MW
o 40 MW
n Appllcatlon and Software Development(.,ZB) Rank  System Cores (PFlop/s)  [PFlop/s) (kW)

1 Frontier - HPE Cray EX235a, AMD Optimized 3rd Generation 8,699,904 120600 171481 22,786
EPYC 64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
DOE/SC/0ak Ridge National Laboratory
United States

i 2 Aurora - HPE Cray EX - Intel Exascale Compute Blade, Xeon 9,264,128 101200 198001 38,698
o ) CPU Max 9470 52C 2.4GHz, Intel Data Center GPU Max,
P » BB Slingshot-11, Intel
)] DOE/SC/Argonne National Laboratory
I y United States
g 3 Eagle - Microsoft NDV5, Xeon Platinum 8480C 48C 2GHz, 2073600 56120 84684
The List. NVIDIA H100, NVIDIA Infiniband NDR, Microsoft Azure

Microsoft Azure
United States

4 Supercomputer Fugaku - Supercomputer Fugaku, A64FX 48C 7,630,848 442.01 537.21 29,899
2.2GHz, Tofu interconnect D, Fujitsu
RIKEN Center for Computational Science

Japan
5 LUMI - HPE Cray EX235a, AMD Optimized 3rd Generation EPYC 2,752,704 379.70 531.51 7,107
64C 2GHz, AMD Instinct MI250X, Slingshot-11, HPE
EuroHPC/CSC
Finland
6 Alps - HPE Cray EX254n, NVIDIA Grace 72C 3.1GHz, NVIDIA 1,305,600 270.00 35375 5,194

GH200 Superchip, Slingshot-11, HPE
Swiss National Supercomputing Centre [CSCS)
Switzerland
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The US Exascale Computing Project

= 3 computers. (~2B)
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A few words about myself

* Born and raised in Karlsruhe
* PhD in Numerical Mathematics from KIT

» Focus on computational linear algebra
and high performance computing (HPC)

» Linear solvers, preconditioners, ...

 During my PostDoc at the University of
Tennessee, | developed MAGMA sparse

MAGMA-sparse as a “child” of
MAGMA explores the development of
sparse linear algebra functionality for
NVIDIA GPUs.

MATLAB
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Limitations:

C code with hand-written build system

Sparse unit testing

Focus on NVIDIA GPUs

Design-specific limitations (flexibility/extensibility)



Learn from your peers...

IDEAS

productivity

) better
scientific
software

) [TAY

Building Trusted Scientific Software

HARE

PUBLISHED AUTHOR  MIKE HER

1 have worked in the scientific software field for more tl
phrase "Verification is doing things right, and validation
phrase to memory in order to avoid confusion when the

Pairing internal and external concerns

Verification focuses on internal concerns of a good sof

=PETSc

Software Verification

s limited to e
itself matche

validation process.
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Think Locally, Act Globally: Outreach for
Better Scientific Software

SHARE

and sustainability Is no small

Helping code teams improve their software di
challenge. In the IDEAS Produc

elopment, p
project, we have found that one of the

to aiding the

Exascale Computing Project (ECP) software development teams involves extensive outreach to the

broader community of computational scientists and engineers (CSE) in high-performance

computing (HPC)

PUBLISHE

An ambitious goal

scheduled to be deployed starting in 2021

BETTER SKILLS

eliver a software environment and applications ready to run on exascale

chieving this goal entails a major,

ale software development effort. Recognizing the challenges development teams will face.

ect 1o help scientific researchers improve their
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Designing a math toolset for ECP applications TUm

'Ginkqo = A sparee linear dlgebra horgry for WPC
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Designing a math toolset for ECP applications
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Distribution of ECP programming languages and models has F d clve lnear syshms
changed over time
Languages o GPU Programming Models 2022
2 33%
£ n2016 2
#2022 27%
S 15 21%
. 18%
10

20

10 I 5

. | -

Fortran C/C++ Python

Native GPU  Loop pragma Kokkos/RAJA  Co-design /

libraries
Many ECP applications started out using native GPU and loop pragma models before moving to
C++ abstractions and co-design libraries

-
EICP == Evans TM, Siegel A, Dracger EW, of al. “A survey of software implementations used by application codos in the Exascale Computing
— Project.” The Journal of High Computing 2022;36(1).5-12.
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Designing a math toolset for ECP applications

Gmkcgo A sparee linear dlgebra horary for WPC
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Fortran C/C++
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Memory safety vulnerabilities are a class of vulnerability affecting how memory can be accessed,
written, allocated, or deallocated in unintended ways. ! Experts have identified a few programming
languages that both lack traits associated with memory safety and also have high proliferation
across critical systems, such as C and C++." Choosing to use memory safe programming languages
Proet The Wi e o ioh eteares oo opaims 522 500l at the outset, as recommended by the Cybersecurity and Infrastructure Security Agency’s (CISA)
Open-Source Software Security Roadmap is one example of developing software in a secure-by-

TUTI




Designing a math toolset for ECP applications
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Translating All C TO Rust (TRACTOR)

@ Active

Notice ID
DARPA-SN-24-89

Related Notice
Department/Ind. Agency

DEPT OF DEFENSE
Sub-tier

“~
Mahices A soe
adhal values

Solvers 5-A" Qy ’

sclve near 5y>ka

Contract Opportunity

DEFENSE ADVANCED RESEARCH PROJECTS AGENCY (DARPA)

Office
DEF ADVANCED RESEARCH PROJE|

General Information

Contract Opportunity Type: Special Noti
All Dates/Times are: (UTC-04:00) EASTER
Original Published Date: Jul 29, 2024 02:

Original Response Date: Aug 19, 2024 11:

Inactive Policy: Manual
Original Inactive Date: Aug 27, 2024

Description

The TRACTOR program aims to achieve a high degree of automation towards translating legacy
C to Rust, with the same quality and style that a skilled Rust developer would employ, thereby
permanently eliminating the entire class of memory safety security vulnerabilities present in C
programs. Performers might employ novel combinations of software analysis (e.g., static
analysis and dynamic analysis), and machine learning techniques (e.g., large language models).
The draft solicitation will be posted shortly.
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Designing a math toolset for ECP applications

TUTI
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Designing a math toolset for ECP applications

TUTI
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Designing a math toolset for ECP applications

build

@ build/amd/nompi/clang/rocm45/deb...
@ build/amd/nompi/clang/rocm45/rele...
O build/amd/nompi/clang/rocm514/rel..
©® build/amd/nompi/acc/rocm45/relea...
@ build/amd/nompi/gcc/rocm514/debu...
© build/amd/nompi/gcc/rocm514_wo....
© build/cuda™10/mvapich2/gcc/cuda/d...
© build/cuda™0/nompi/clang/cudalrel...
© build/cuda0/nompi/clana/cuda/rel...

© build/cudal14/nompi/gce/cuda/debu..

9 build/icpx20231/igpu/release/shared

© build/icpx/igpu/release/static

© build/nocuda-nomixed/nompi/clang/...
© build/nocuda-nomixed/nompi/clangl...
© build/nocuda-nomixed/openmpi/acc...
© build/nocuda/nompi/clang/corefrele...
© build/nocuda/nompi/gcc/core/debu...
© build/nocuda/nompi/gcc/omp/releas...
© build/nocuda/nompi/gcc/omp/releas...
2 build/nocuda/openmpi/clang/omp/d...
© build/nocuda/openmpi/clang/omp/al...
© build/nvhpc227/cudall7/nompi/nve...

© build/nvhpc233/cudal20/nompi/nvc...

© build/windows-cuda/release/shared

© build/windows/release/shared
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Designing a math toolset for ECP applications TUm
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Starting with the CUDA backend

CORE
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Extending to AMD GPUs

~2 months

Library core contains

x -
architecture-agnostic Algorithms - Glnkgo

D bett
o Resources v Events About v . .
D Software esouree . factionality
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o
X - 2
HIP Ecosys‘tem Architecture-optimized kernels % BICGSTAB
% co
SHARE REFERENCE OpenMP CUDA HIP 3 cos
In response to the expl Jik in hardware , hardware portability and > E GMRES
the ability to adopt new processor designs have become a central priority in realizing software Unit tests check @Z NVIDIA. AMDA BRIDR
sustainability. In this blog article, we discuss the experience of porting CUDA code to AMD's correctness E (Block-)Jacobi
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- - £
—— - p— - Jo— 3 ParallelILU/IC
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Weak and strong Scalability

SpMV Weak scaling: problem size increases with parallel resources

Weak scaling up to 8k AMD MI250 GPUs (16k GCDs)
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Weak and strong Scalability TUm

Strong scaling: problem size constant, parallel resources increase Frontier (#1 TOPSOO)
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We “forgot” the customer on the way...

CORE
Library core contains - = -
e st e 5% Ginkgo
factionality E
Iterative Solvers
- Functionality OMP CUDA HIP
Preconditioners
o SpMV ¢ ¢ @
MFEM is a free, lightweight, scalable C++ library for finite element methods. Runtime polymorphism selects the right 3 :pleMM : Z :
. B pGel
kernel depending on the target architecture . Taico o B
Architecture-optimized kernels S BiCGSTAB ¢ @ @
H [ u n "3’ 6 @ @ @
Speeding up MFEM's “example 22" on GPUs REFERENCE OpenMP CUDA HIP 3 cos v ¢ @
Example 22 of the MFEM finite element library solves harmonic oscillation problems, with a S oMRES ¢ @ @
forced oscillation imposed at the boundary. In this test, we use variant 1: Unit tests check <ANVIDIA. AMDZ1 , DR ¢ @ @
< 5 (Block-)Jacobi 2 2 4
i v (avu) _ wzbu +jweu =0 v correctness 1 1 E e ¢ @
. - : WM‘.J 3 o 7 sooneces 3 ParallelILU/IC ¢ ¢ @
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2, K+ p=1(MI50) - 200,000
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& 10 e <k p =2 (MI50) 008422 g 150,000
(gﬂ os —— p=3(V100) ’ S
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it - 50,000
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0
Speedup of Ginkgo's Compressed Basis-GMRES solver vs MFEM's GMRES solver for three 2018 2019 2020 2021 2022 2023 2024 T TR
different orders of basis functions (p), using MFEM matrix-free operators and the Time 4 MCS4/RCM reordering x
Ginkgo-MFEM integration wrappers in MFEM. CUDA 10.1/V100 and ROcm 4.0/MI50. Z  Wrapping user data ——v—
S Logging ]
PAPI counters C v

Natalie Beams
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Extending to Intel GPUs

T
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Preparing for the Arrival of Intel’s Discrete High-
Performance GPUs

By Harwig Anzt

March 23, 2021
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Extending to Intel GPUs

* Bi-Weekly technical meetings with Intel
* Long list of bug reports, feature requests, performance data discussions, documentation improvements ...

CUBLAS backend (and potentially other domains) fails with latest LLVM builds (2228 ... but also docker image contributions and bug fixes!
#223

ELIET) mmeterel cpened this issue 22 days ago - 3 comments

(double) 1/a gives wrong result when the tid % subgroup si

tid % subgroup size >= 4 gives wrona division I
{ ginkgohub/oneapi:cuda11.6
IGEST: sha2

cldeafcda753365c6e1a94ed!

56:0bcac10d79

For example, when a = 1.07338829563753890

' mmeterel commented 22 days ago - edited + Contbutor | | pesioneos 1/a should be 0.9316293125835232 i
‘ & retert if (local_id == assign_id) { a = double(1)/a; } smRes onpREssER Size TR
when assign_id < 4, Gen9 GPU still give the correct result fnuxiamdea 86368 22 days ago by yhmisa

Summary
when assign_id >= 4, Gen9 GPU gives wrong 0.93162935¢
1.0000000506

As fist observed in #219 many tests in CUBLAS backend s faling with atest LLVM buids Rt
CPU has more worse result
rsion
b i s connected to optmizatons (not reproducibie with O0) FIX CUE/NIP DACKENA 10CAION #£ 1Y (==
I have tried LLVM commit: 66361038b63caaae566fc96485da50b74222b83 and got the below tests failing (showing only a few fp-specuation=off do not improve results. IMAGE LAYERS @ ‘mkrainiuk merged 2 commits into oneapi-src:develop from yhmtsai:fix_cuda_backend_location (C) 20 days ago
of them) I Ticket number: XDEPS-4031 ()
No milestone ADD file ... in / @) Conversation 8 o Commits 2 [l Checks 0 [ Flleschanged 16 +76 -0 mmmmn
PR i afor TITA.ATK (Failed) E
&7 BAN/AT LNRJGE TITAILRTX (Failed) No branches or pull requests @ ik v
19 BLAS/RT/TanaxTestSuite/LanaxTests .ReslDoubleprecision/Coluan Major TITANRTX (Failed) 5 o
23 - BLAS/RT/ or TITAL AT (Faile) - sycl-Is/clinfo does not give any o ENV NVARCH-x86_64 Description § rmeterst v
7 - Wejor_ TITAVRTK (Fosiod) ——
3 - s/ e TV (retiss) s s001-n225, s011-n006 Fromintelflvmi#6407, it moves aimost all headers from CLsycl to sycl "
81 - BUAS/RT/ScalTestSuite/ScalTosts RoalSingleprecision/Colum Major_TITAVRTX (Failed) - no gpu on the nodes {oloved ¥130 vy Noona asigned
85 - 8UAS/R1/ScalTastsuite/ScalTosts ConplexSinglep Nador, TITAVRTX (Failea) make the headr can use syl f they exst and alow the old ntl v
s001-n232, s001-n233, s011-n008 150 Upcatethe CLjsyeLhpp whih ae not changed befoe.
Aithith ram ie nat anraceahla An InAin o oo
- All Submissions Naneyet
From DPCPP AoT documentation, not clear:
D0 alunit tasts pass loclly? Atach a og. A s acompiing ssue. o
Have you formated the code using clang-format? None et
) . P ) y 5 .
e The options are also requ.lred a.t I|nk|ng time? L.Jnused in files without kernels? Performance of DPC++ MAGMA SGEMM on Intel GPUs )
e Any example of other projects integrating AoT in a CMake setup? 20000 Bug fixes Miestons
oot E0 0-DPCH+ (MAGMA ker11) O ——
Have you ncluded nformation on how to reproduce th ssue (ither ina R
16000 “CroneMKL Gt fssue orin this PR)? ‘Successtully merging this pull recuest may close.
Intel Compiler (Fortran/C/C++/L0) - Intel Discrete GPU Accelerator - Joint Laboratory for System Evaluation (anl.gov} 3888 il =0=DPC++ (MAGMA ker2) i i VN S haaders. e
hang_atomic_on_local °
) . . — g 10000 d Arcticus at ALCF G shmtsaladdod 2 commits 2 months ago
Ticket number: CMPLRLLVM-36572 (works in PVC, but still fails on ATS node) o 8000 - Intel Xe-HP GPU (Arctc Sound 2) se
related to driver not compiler self & 6000 7,680 x2 Cores @900 MHz Il 2 e o
4000 FP32 peak 13,820 x2 GFlop/s e e :
2000
0 f - ostom o Aurora e
Exascale supercomputer at ANL o 2
O A B A o > @ M @yhmtssi Thanks for the PR, the description fron sycL/CL to €L correct? My understanding i sl esder fles moved
VPP QO v < O 2
AT T QT A @
Matrix size (m=n=k)
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Portability and Extendibility as Central Design Principle TUm

CORE
Library core contains Infrastructure X -
architecture-agnostic Algorithms —— Glnkgo
functionality + Iterative Solvers

Preconditioners

Runtime polymorphism selects the right
kernel depending on the target architecture

Architecture-optimized kernels

REFERENCE OpenMP CUDA HIP SYCL : ‘
Unit tests check @Z NVIDIA. AMDZ1 intel RISC-\V°
V correctness J J J J
CI { CD -@999 e -% gosgletest -% gogletest -@9999!59.#

This software design gives portability, performance, and sustainability.
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FP64

FP64 Tensor Core

FP32

TF32 Tensor Core

BFLOAT16 Tensor
Core

FP16 Tensor Core

FP8 Tensor Core

INT8 Tensor Core

GPU memory

GPU memory
bandwidth

. (Dense) Matrix Performance > Vector Performance
. Low Precision Perf > High Precision Performance

Hardware Trends
<@ANVIDIA.

ml

34 teraFLOPS

67 teraFLOPS

67 teraFLOPS

989 teraFLOPS*

1,979 teraFLOPS*

1,979 teraFLOPS*

3,958 teraFLOPS:

3,958 TOPS:

80GB

3.35TB/s

10,000,000

Sustained (streaming)

Memory Bandwidth is falling

behind Peak FLOPS rates,

but every other kind of

Pl memory access is falling
behind even faster....

1,000,000

10,000

1,000

100

10

Balance: computation vs. communication

1990 1995 2000 2005 2010 2015 2020

Trends in the relative performance of floating-point arithmetic and several classes of data
access for select HPC servers over the past 25 years. Source: John McCalpin

TUM School of Computation, Information and Technology | Technische Universitat Miinchen




NVIDIAA100

—— fp64
—¢-Tp32
---- Peak fp64 performance
---- Peak fp32 performance

Compute Performance [GFLOP / s]

10° 101 102 103
Arithmetic Intensity [FLOP / Value]
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Compute Performance [GFLOP / s]

104 4

103 |

Compute-bound operations

M ] i
emory-bound operations (dense linear algebra)

(sparse linear algebra)

® run arithmetic in low precision

L : k.
B 1 ow precigien ¢ faster because of higher FLOP/S™

® faster access e

—§— fp64
—¢ T
---- Peak fp64 performanes
---- Peak fp32 performans®

10° 10! 10° 103
Arithmetic Intensity [FLOP / Value]
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Compute Performance [GFLOP / s]

———————————————————————————’————————-

Matrix fp32 . TI.ITI

————————————————————————F‘———“————————-
*

Matrix fp64 * .

104 4

103 |

Compute-bound operations

M ] i
emory-bound operations (dense linear algebra)

(sparse linear algebra)

® run arithmetic in low precision
® faster because of higher FLOP/s

® data access in low precision
® faster access &

—§— fp64
—¢ T
---- Peak fp64 performanes
---- Peak fp32 performans®

10° 10! 10° 103
Arithmetic Intensity [FLOP / Value]
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TUTI

Linear System Ax=b with cond(A) = 10’
( apache2 from SuiteSparse ) NVIDIA V100 GPU

Double precision GMRES Single precision GMRES
Initial residual norm Relative residual ~101? Initial residual norm Reglative residual ~107
sqrt(r™t r): 9670.36 sqrt(r™t r): 9670.36
Final residual norm Final residual norm
sqrt(r*T r): 9.6639%e-09 sqrt(r*T r): 0.00175464
GMRES diteration count: 23271 GMRES iteration count: 25000
GMRES execution time: 43801 ms GMRES execution time: 27376 ms
~2x faster!

£ 104 —#— DP-GMRES

.'5 1072

@ forward error = ( unit round-off ) * (linear system’s condition number)

é 107° 1 N. Higham: Accuracy and stability of numerical algorithms. SIAM, 2002.

0 2000 4000 6000 8000 10000
Iteration
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ECP Focus Effort Mixed Precision

*  Traditionally, we use a strong coupling between the sSeee

Arithmetic Operations

the precision format handling data in main memory.
*  We should compute in fp64

e  Data should be compressed for main memory access
(low precision/compression)

*  Compression / Conversion needs to happen on-the-fly Memory Operations
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ECP Focus Effort Mixed Precision

*  Traditionally, we use a strong coupling between the sSeee

Arithmetic Operations

the precision format handling data in main memory.
*  We should compute in fp64

e  Data should be compressed for main memory access
(low precision/compression)

*  Compression / Conversion needs to happen on-the-fly Memory Operations
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ECP Focus Effort Mixed Precision

Traditionally, we use a strong coupling between the

the precision format handling data in main memory.

We should compute in fp64 Lossless Compression
p fo * Huffman encoding
_ . 1277,1278
Data should be compressed for main memory access .

(low precision/compression)

Compression / Conversion needs to happen on-the-fly

TUM School of Computation, Information and Technology | Technische Universitat Minchen

Arithmetic Operations

IEEE 754 DP

Lossy Compression
* Low precision
Memory Accessor « Custom formats
e 7ZFP,SZ, ...

Compressed Data

Memory Operations




ECP Focus Effort Mixed Precision TUm

¥ MGS-GMRES<fp64,fp64>

Compressed Basis (CB-) GMRES GMRES<fp64,fp64>
GMRES<fp64,fp32>
*  Use double precision in all arithmetic operations; GMRES<fp64 fp16>

*  Store Krylov basis vectors B in lower precision;
e Search directions are no longer DP-orthogonal;
*  Hessenberg system maps solution to “perturbed”
Krylov subspace;
e Additional iterations may be needed;
* Aslong as the loss-of-orthogonality is moderate,
we should see moderate convergence degradation;

arithmetic precision memory precision

Input Compute Output

Bs > BD

Normalized residual norm

v
<B,y>p— (Bly)s o | | |
4 0 500 1000 1500
YD lteration number

<
O
v
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TUTI

Linear System Ax=b with cond(A) = 10’
( apache2 from SuiteSparse ) NVIDIA V100 GPU

Double precision GMRES Single precision GMRES
Initial residual norm Relative residual ~101? Initial residual norm Reglative residual ~107
sqrt(r™t r): 9670.36 sqrt(r™t r): 9670.36
Final residual norm Final residual norm
sqrt(r*T r): 9.6639%e-09 sqrt(r*T r): 0.00175464
GMRES diteration count: 23271 GMRES iteration count: 25000
GMRES execution time: 43801 ms GMRES execution time: 27376 ms
~2x faster!

£ 104 —#— DP-GMRES

.'5 1072

@ forward error = ( unit round-off ) * (linear system’s condition number)

é 107° 1 N. Higham: Accuracy and stability of numerical algorithms. SIAM, 2002.

0 2000 4000 6000 8000 10000
Iteration
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Linear System Ax=b with cond(A) = 10’
( apache2 from SuiteSparse ) NVIDIA V100 GPU

Double precision GMRES

Initial residual norm Relative residual ~1012

sqrt(r™t r): 9670.36
Final residual norm

Single precision GMRES
Initial residual norm Relative resi
sqrt(r™t r): 9670.36
Final residual norm

dual ~107

sqrt(r*T r): 9.6639%e-09
GMRES iteration count: 23271
GMRES execution time: 43801 ms

sqrt(r*T r): 0.0017546
GMRES diteration count:
GMRES execution time

Compressed Basis GMRESRebﬂvereﬁJual”lO42

Initial residual norm
sqrt(r™t r): 9670.36
Final residual norm
sqrt(r*T r): 9.6591e-09
GMRES iteration county/
GMRES execution time:

Accuracy of DP GMRES
Performance similar to SP GMRES
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NVIDIA V100 GPU

GMRES<fp64,fp64>
O GMRES<fp32,fp32>
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CB-GMRES using 32-bit storage
preserves DP accuracy
(SP-GMRES does not)

Normalized residual norm

TUTI

GMRES<fp64,fp64>
O GMRES<ip32,p32> NVIDIA V100 GPU
GMRES<ip64,fp32>
GMRES<ip64,fp16>
r {) GMRES<ip64,int32> T —
107° - — GMRES<fp64,int16> A ERm -+
- A e
L0000009080060006044545,HR00 0000090 00R@8C00000000
i L _©
O AS A < © A Q ¢ o
A T 1 A i
L VN TN T A N T I At
A AvAvAv Ry T o &
. S0 G0 kG 9 00 w9 & 0 & S8 UBG
s s s s S O O |
SRR PO R0 d A& NN 040 % 2 XX FRPFHRR N S 3 Lo @ TR @ o
500 A 1 TR b T Y S
N
DD DS 'bé/ VR 3\@%\@&2 ((\o% NS gogoi 900\)0\)00 ) QJQ‘Z?((\‘&O 63\00 N t;oo L ’16’\\&&
& ¢
Matrices
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CB-GMRES using 32-bit storage
preserves DP accuracy
(SP-GMRES does not)

Speedups problem-dependent
Speedup @1.4x (for restart 100)

16-bit storage mostly inefficient

x -

== Ginkgo

Aliaga JI, Anzt H, Gritzmacher T, Quintana-
Orti ES, Tomas AE. Compressed basis
GMRES on high-performance graphics
processing units. The International Journal of

High Performance Computing Applications.
2022;0(0). doi:10.1177/10943420221115140

Normalized residual norm

TUTI

GMRES<fp64,fp64>
O GMRES<fp32,fpa2> NVIDIA V100 GPU
GMRES<ip64,fp32>
GMRES<ip64,fp16>
r {) GMRES<ip64,int32> T —
107° - — GMRES<fp64,int16> A ERm -+
- A R
F00000090800680060455455R00 00000%o0 00R@EC00000000
i L _©
i L il < © A & o
ABANARG 2 4 & I 1 Ao 1
10710 A AY OO O Ay %0 A O =
OO0V O NRES e
I GO 00 Dese ¢ 00 #v & 0 & A OBN
N I e ) ) O Y I I
25 —
A
A
A r A
3 A v
oo A v
> =15 88XX A©v v XX
ST IYITTTIREIEIEET s o885 0GE98 ou vEaILEE,
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v
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https://doi.org/10.1177/10943420221115140

ECP Focus Effort Mixed Precision

* Preconditioning iterative solvers

Al

Mike Tsai

* Idea: Approximate inverse of system matrix to make the system “easier to solve”: P71~ A}
andsove Az =0 < P l'Az=P % & Az=10

I NVIDIA AmgX (DP) B AMG (DP) 1 AMG (MP)
12

* Mixed Precision Multigrid Preconditioner

Stephen F. McCormick, Joseph Benzaken, Rasmus Tamstorf: Algebraic error
analysis for mixed-precision multigrid solvers, https://arxiv.org/abs/2007.06614

ms per iteration
(2]

3
smoothing high precision
sidichidadalid 4 0
P -02-13 -03-13 -04-13 -03-14
The Mu'tlg"d MFEM beam with different setting
V-cycle I NVIDIA AmgX (DP) I AMG (DP) [ AMG (MP)
14
Finest Grid prolongation § 10.5
(interpolation) g
£ 7
low precision &
£ s .
Note: 0 -
smaller grid -03-17 -03-18 -04-18 -04-7
MFEM L-shape with different setting
First Coarse Grid
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https://arxiv.org/abs/2007.06614

Batched Focus Effort

Batched iterative solvers for SUNDIALS / PeleLM

PeleLM is a parallel, adaptive mesh refinement (AMR) code that
solves the reacting Navier-Stokes equations in the low Mach
number regime. The core libraries for managing the subcycling
AMR grids and communication are found in the AMReX source
code.

https://amrex-combustion.github.io/PeleLM/overview.html

Carol Woodward Cody Balos

25.0 1 mmm richardson
20.0 1 mmm bicgstab
. gmres

10.0 4

7.0

g

B

?; 0] | e
Problem Size  Non-zeros (A) Non-zeros (L+U) § I ] I I B
dodecane_Tu 54 2,332 (80%) 2,754 (94%) 4 307 il | | 1 ! i
drm19 22 438 (90%) 442 (91%) T | | B
il2 B osem 1018 03%) 2 III I III III I II Batched Sparse Iterative Solvers for Computational
gri : o : 0 g : : -
ooctane 144 6135 (30%) 20,307 (98%) & 1o [ | | Chemistry Simulations on GPUs
lidryer 10 91 (91%) 91 (91%) JII_III_III_III_II_IIL Publisher: IEEE

0.5+

dodecane_lu drm19 gri12 gri30 isooctane lidryer Isha Aggarwal ; Aditya Kashi; Pratik Nayak ; Cody J. Balos ; Carol S. Woodward ; Hartwig Anzt ~ All Authors
Problem
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https://amrex-codes.github.io/amrex/
https://amrex-codes.github.io/amrex/
https://amrex-combustion.github.io/PeleLM/overview.html

Batched Functionality for the Collision Operator

XGC is a gyrokinetic particle-in-cell code, which specializes in
the simulation of the edge region of magnetically confined
thermonuclear fusion plasma. The simulation domain can

Paul Lin Dhruva Kulkarni

include the magnetic separatrix, magnetic axis and the biased
material wall. XGC can run in total-delta-f, and conventional
delta-f mode. The ion species are always gyrokinetic except for

ETG simulation. Electrons can be adiabatic, massless fluid,
driftkinetic, or gyrokinetic.

Source: https://xgc.pppl.gov/html/general info.html
~

Coupling

Charge scatter
Field solve

Electron push (x6-60)

* Two species

* lons easy to solve

* Electrons hard to solve

* Banded matrix structure

* Non-symmetric, need BiCGSTAB

{ lon push
'Partcle Sh|ft 0 100 200 300 400
i
Co -
(GENE) Collisions
Sources
Diagnostics
—

XGC collision operator: fully nonlinear multi-species Fokker-Planck-Landau

For each mesh vertex:

» Outer nonlinear solver: Picard method with inner linear solves

« Linear solve: discretize velocity space with approx 35x35 velocity grid

« direct solve on CPU using LAPACK banded solver dgbsv

« After GPU porting of XGC, this is the remaining CPU intensive kernel for collision operator

TUM School of Computation, Information and Technology | Technische Universitat Minchen

500 600

10

=5

Imaginary part (x1073)
o

-10

* n="~1,000
* nz= "~9,000
electron

ion

0.5 1.0 15
Log(10) real part



https://theory.pppl.gov/research/research.php?rid=10
https://xgc.pppl.gov/html/general_info.html

Batched Functionality for the Collision Operator

10" o249, 88008094840¢
,,,,,,, g
3 0
< 10
= processor
- £ A . —— Skylake
@ 2 $040e0504000 e —— V100
_qé 102 g, date ....:.v.fv’.f’?.’.of.f!nco.«o;.. . A100
o = : — Mi100
= ) 10'1 %
8 i solvertype_matrixformat
3 —&— bicgstab csr
,g -@- bicgstab ell
3 : -4+ sparse_direct csr
& i AR SR SRS SE RS ™ b dgbsv banded
- 107 ‘
10
0 100 200 300 400 500 600 0 100 200 300 400 500 600
batch size batch size
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Batched Functionality for the Collision Operator TUm

XGC DIII-D National Fusion Facility tokamak electromagnetic (EM) test case

8 nodes of NERSC Perlmutter: 32 A100s, 1 MPI per GPU; single socket 64-core AMD EPYC

8 nodes OLCF Frontier: 32 MI250X, 64 GCDs, 1 MPI per GCD; single socket 64-core AMD EPYC

8 nodes ALCF Aurora: 48 Intel Data Center Max 1550, 96 tiles, 1 MPI per tile; dual socket 52-core Intel CPU Max 9470C SPR

B Linear solve M Collision (w/o linear solve)
12.000

NEeRsC

10.000

8.000

6.000

™1 (&J INITTEn

e —

4.000

time/step (sec)

2.000

0.000 Arzonne A
Perim Perim  Frontier Frontier Aurora  Aurora ,’ m "
LAPACK GINKGO LAPACK GINKGO LAPACK GINKGO =

Y

Aditya Kashi, Pratik Nayak, Dhruva Kulkarni, Aaron Scheinberg, Paul Lin, and Hartwig Anzt. Batched sparse iterative solvers on gpu for the collision
operator for fusion plasma simulations. In 2022 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 157-167. IEEE, 2022.
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Power Grid Simulations TUm

Mathematical Formulation of the ExaSGD Core Challenge
Security constrained multiperiod AC optimal power flow analysis o
AN
Posed as an optimization problem: The optimization problem E b
the underlying linear syst \
Find N\
min (X, Fy(x,) + generator fuel cost [ )
Xt:Ytsk K]
+ sk Gesk (Xt + Vesk)) wind curtailment,
load shedding, K2
power imbalance, etc. K / o5 1 s 2 2
Subject to: - 3 T = - EXASGD
Hig(Xs, Visi) = 0 flow definitions,
T power balance
Qpsi(Xe Visk) <0 bounds: generator power, Ky By|| v In
o voltage, branch flow
BT B,Y BT .. BJ K,|| x v
Rt(xv, Xs1) <0 generator ramping limit [ 1 2 ¢ i 0JL ’
* The characteristic block-arrow coupling structure can be exploited to decompose the optimization © Slaven Peles

problem, nevertheless there is no solver that can tackle this on a GPU-based architecture.
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Sparse Direct Solvers TUTI

0x1o5
. T~

i \\ s Grid Buses Generators Lines N(Kj) nnz(Ky)
i H V AN Northeastern US 25 K 48K 323K 108K 1.19 M
3 "\ Eastern US 70 K 104K 882K 206K 320 M
’ Western and Eastern US 82 K 134K 1041 K 340K 3.73M

m Hessian m Constraints m Constraint Jacobian Other mSolve mFactorize

3.5

&
-

(a) Northeast U.S. grid (b) Eastern U.S. grid (c) Eastern and Western U.S. grids
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Sparse Direct Solvers TUm

oo - f

Liner Solver Performance within Optimization Algorithm
Average per iteration times (including first iteration on CPU)

» Each GPU solution 1000 ‘
outperforms all CPU :Ei‘fii”“
i 5 Other
baselines 200
800 ] ConstraJInt Jacobian
+ Ginkgo performance improves 200 = Constraints
on a better GPU.
'g‘ 600
« lterative refinement g 500 .
configuration affects linear = 400
solver performance and w . -
optimization solver o - ol = . 23
convergence. 33 5
g 100 - . . 2 . v B . 18
+ Ginkgo is the first GPU- Lo 106, 2,
resident sparse direct linear MAS7 (P9) MAS7 (EPYC) cuSolverRf  cuSolverGLU Ginkgo (V100)  Ginkgo
solver. (V100) (V100) (MI1250X)
E‘(E\ =F ) Multiple promising GPU-resident sparse linear solvers
{C
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After 6 years of development

= EuroHPC Project MICROCARD uses Ginkgo

*
* %

* 4k

7 ENEA,""
ﬂ X

N/
[LROR <

N MICROCARD

=  DoE SciDAC-5 : Development of ngh Fidelity
Simulation Capabilities for
ELM-free Design Optimization

Ta
e‘.
‘i«
'

https://www.microcard.eu

=  BMBF PDExa and ExaSIM projects use Ginkgo

CEED/NekRS
OpenV/FOAM e

The Open Source CFD Toolbox

=  Companies are evaluating Ginkgo

4\ MathWorks g'é aWS

CORE
Library core contains Infrastruct x -
architecture-agnostic o == Ginkgo
factionality E

Iterative Solvers
Preconditioners

Runtime polymorphism selects the rigk;t
kernel depending on the target architecture

Architecture-optimized kernels

REFERENCE OpenMP CUDA HIP SYCL
Unit tests check <ANVIDIA. AMDA |ntel
AP PR DI SR |
CIICD ‘(’m" « -‘qm.« - -‘qm.« - -‘qmn -
—— Ginkgo
200,000
3 150,000
o
o
-
o
100,000
1)
£
-
50,000
0
2018 2019 2020 2021 2022 2023 204
Time
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Basic

Krylov solvers

Preconditioners

AMG Batched

Sparse direct

Utilities

SpMV
SpMM

SpGeMM

BiCG

BiCGSTAB

o}

CGS

GCR

GMRES

FCG

FGMRES

IR

IDR

Block-Jacobi

ILU/IC

Parallel ILU/IC
Parallel ILUT/ICT
ISAI

Batched BiCGSTAB
Batched CG
Batched GMRES
Batched ILU
Batched ISAI
Batched Block-Jacobi
AMG preconditioner
AMG solver
Parallel Graph Match
Symbolic Cholesky
Numeric Cholesky
Symbolic LU
Numeric LU

Sparse TRSV

On-Device Matrix Assembly

MC64/RCM reordering
Wrapping user data
Logging

PAPI counters

v MPISupport

TUTI

OMP CUDA HIP DPC++
v v v

<
CNONONONON - NONCON - M- JCY
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& Single-GPU Support


https://www.microcard.eu/

Lessons learnt over the years TUm

ECP earmarking roughly half the budget to Software & App development is a game changer.
=  Central component for the success of ECP.

=  This concept needs to — and does become - the blueprint for other nations, companies, and projects.

Workforce recruitment and workforce retention are the key to success in software development.
=  Money does not write software. RSEs do. We need to create attractive career plans.

=  We need to make research software development attractive to students. Academic recognition. Industry career paths.

Anticipating the future in hardware development accelerates the porting process.
» Blueprints and early access systems both useful.

* Interaction with industry is mutually beneficial.

Strategic initiatives, interaction and collegial behavior are important.
= Strategic focus groups, conferences, and meetings bring experts together and create collaboration.

= Listen to the application needs. Value input and acknowledge collaborators.

TUM School of Computation, Information and Technology | Technische Universitat Miinchen
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Workforce recruitment and workforce retention are the key to success in softwaré
=  Money does not write software. RSEs do. We need to create attractive career

=  We need to make research software development attractive to students. Acadel

Anticipating the future in hardware development accelerates the porting process.

= Blueprints and early access systems both useful.

Transforming Science Through Software:

= Interaction with industry is mutually beneficial. Improving While Delivering 100x

Strategic initiatives, interaction and collegial behavior are important. & IEEE

= Strategic focus groups, conferences, and meetings bring experts together ai @/scgch;'gygﬂ

www.computer.org/cise

= Listen to the application needs. Value input and acknowledge collaboraton
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ECP Focus Effort Mixed Precision

. iti H Lossless Compression
Traditionally, we use a strong coupling between the il as cncerding

precision formats used for arithmetic operations . 1277,1278
the precision format handling data in main memory

*  We should compute in fp64

*  Data should be compressed for main memory acces.
(low precision/compression)

*  Compression / Conversion needs to happen on-the-fly

Input Compute Output
Bs > B D v
<B.y>p— (Bly)s
Yb

v

Yp

TUM School of Computation, Information and Technology | Technische Universitat Minchen

Arithmetic Operations

IEEE 754 DP

Memory Accessor

Compressed Data

Memory Operations

Lossy Compression
* Low precision

* Custom formats
e ZFP,SZ, ..



