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Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U.
is a good approximation with moderate nonzero count (e.g. nnz(L 4+ U) = nnz(A)). .
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Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U.
is a good approximation with moderate nonzero count (e.g. nnz(L 4+ U) = nnz(A)). .

*  Where should these nonzero elements be located?
How can we compute the preconditioner in a highly parallel fashion?
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Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U.
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)). .

e Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization

. Decompose system matrix into product A = L - U.

. Based on Gaussian elimination.

. Triangular solves to solve a system Ax = b:
Ly=b=1y = Ly=b==x

\

. De-Facto standard for solving dense problems.
| . What about sparse? Often significant fill-in...
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Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U.
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).

e Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization Incomplete LU Factorization (ILU)
. Decompose system matrix into product A = L - U. * Focused on restricting fill-into a
. Based on Gaussian elimination. specific sparsity patternS.

. Triangular solves to solve a system Ax = b:
Ly=b=y = Ly=b==x

. De-Facto standard for solving dense problems.
. What about sparse? Often significant fill-in...
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Motivation
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We are looking for a factorization-based preconditioner such that A ~ L - U.

is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).

Where should these nonzero elements be located?

How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization Incomplete LU Factorization (ILU)

Decompose system matrix into product A = L - U. Focused on restricting fill-into a

Based on Gaussian elimination. specific sparsity patternS.

Triangular solves to solve a system Ax = b:
Ly=b=y = Ly=b==x

For ILU(0), S is the sparsity pattern of A.

*  Works well for many problems.
De-Facto standard for solving dense problems. * Is this the best we can get for nonzero count?
What about sparse? Often significant fill-in...
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Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U.
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).

e Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?

Exact LU Factorization Incomplete LU Factorization (ILU)
. Decompose system matrix into product A = L - U. * Focused on restricting fill-into a
. Based on Gaussian elimination. specific sparsity patternS.
. Triangular solves to solve a system Ax = b:
Ly=b=1y = Ly=b==x * For ILU(0), S is the sparsity pattern of A.
*  Works well for many problems.
. De-Facto standard for solving dense problems. * Is this the best we can get for nonzero count?
. What about sparse? Often significant fill-in...
X X X X X X * Fill-ininthreshold ILU (ILUT) bases S on the
X ox o significance of elements (e.g. magnitude).
% OO L « Often better preconditioners than 7
o oL L7 level-based ILU. //
XX . * Difficult to parallelize. /
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/tM:— Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U.
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).

e Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?

Rethink the overallstrategy!

e Use a parallel iterative process to generate factors.
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Motivation

We are looking for a factorization-based preconditioner such that A ~ L - U.
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)). .

e Where should these nonzero elements be located?

* How can we compute the preconditioner in a highly parallel fashion?

Rethink the overallstrategy!

e Use a parallel iterative process to generate factors.

* The preconditioner should have a moderate number of nonzero elements,
but we don’t care too much about intermediate data.
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Motivation

Rethink the overallstrategy!

We are looking for a factorization-based preconditioner such that A~ L - U.
is a good approximation with moderate nonzero count (e.g. nnz(L + U) = nnz(A)).
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Where should these nonzero elements be located?

How can we compute the preconditioner in a highly parallel fashion?

Use a parallel iterative process to generate factors.

The preconditioner should have a moderate number of nonzero elements,
but we don’t care too much about intermediate data.

(", )

Select a set of nonzero locations.

1
2. Compute values in those locations such that A ~ L - U is a “good” approximation.

3. Maybe change some locations in favor of locations that result in a better preconditioner.
4

Repeat until the preconditioner quality stagnates.

D
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...

x * x *x * * x *x x x *
x x *x x *x N N A
x x * x x *x *
* * e * % *
* x *x * * * *
x *x x *x N x *x *
ILU residual R = A - L X U
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...

* ot
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...

* ot

*
b o S o
*
*
b D S o
*
*

* >t ot ot
%
—
Ut ot
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...

D D D S o
>
b o S o
*
*
X Xt X
*
*
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

* Thisisan optimization problem...

x * x *x * * x *x x x *
x x *x x *x N N A
x x * x x *x *
* * e * % *

ILU residual * N * * * ok

matrix pattern * X xox xox xox *
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

 This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. )

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

nnz(L + U) equations
nnz(L + U)variables

* ok K K * x ok X K * * * Kk Kk x *
* ok x Kk x * x Kk *x NE— * % * N
* x Kk Kk K K ol x o+ % * x x *
* K Kk % * I * I * x *
NE— *
MU *
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Considerations

?

/1.

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.
3. Maybe change some locations in favor of

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

Select a set of nonzero locations. \

locations that result in a better preconditioner.

This is an optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

This is the underlying idea of Edmond Chow’s parallel ILU algorithm?:
1 —1 . .
= {3 oo EETbn). 1>
’ i—1

Qij — D p—q likUkj, i< J

Converges in the asymptotic sense towards incomplete factors L, U
suchthat R=A—-L-U =0|s
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Considerations

J

Select a set of nonzero locations.

2. Compute values in those locations such that
A=~ L -U isa “good” approximation.

|

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘ |
i

* This isan optimization problem with nnz(A — L - U) equations
and nnz(L + U) variables.

* We may want to compute the valuesinL,Usuchthat R=A—-L-U =0|s,
the approximation being exact in the locations included in S, but not outside!

* This isthe underlying idea of Edmond Chow’s parallel ILU algorithm?:

1 —1 . .
N

Qij — D p—q likUkj, 1< J

Fixed-point sweep

* We may not need high accuracy here, ~ approximates
because we may change the pattern again... incomplete factors.

One single fixed-point sweep.
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeat until the preconditioner quality stagnates.

Fixed-point sweep
approximates
incomplete factors.
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeat until the preconditioner quality stagnates.

e Comparing sparsity patterns extremely difficult.

Compute ILU
residual & check

convergence.

* Maybe use the ILU residual as convergence check.

Fixed-point sweep
approximates
incomplete factors.
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU

residual & check

\ 4. Repeatuntil the preconditioner quality stagnates. convergence.

* The sparsity pattern of A might be a good initial start for nonzero locations.

Fixed-point sweep
approximates
incomplete factors.
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Considerations

Select a set of nonzero locations. \

Identify locations
with nonzero ILU

2. Compute values in those locations such that

A~ L -U isa “good” approximation. residual.
3. Maybe change some locations in favor of
locations that It in a better preconditioner. Compute 1LY
ocations that resu a better preco oner. residual & check o
\ 4. Repeatuntil the preconditioner quality stagnates. convergence. P, .
O OOOO
* The sparsity pattern of A might be a good initial start for nonzero locations. "%
* Then, the approximation will be exact for all locationsSy = S(Lq + Up) oy

and nonzero inlocations S; = (S(A) U S(Lo - Uy)) \ S(Lo + Up)*.

Fixed-point sweep
approximates
incomplete factors.
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Considerations

Select a set of nonzero locations. \

Identify locations
with nonzero ILU

2. Compute values in those locations such that

A~ L -U isa “good” approximation. residual.
3. Maybe change some locations in favor of
| ti that It i bett diti Compute ILU
ocations that result in a better preconditioner. residual & check o
\ 4. Repeatuntil the preconditioner quality stagnates. convergence. P, .
O OOOO
* The sparsity pattern of A might be a good initial start for nonzero locations. "%
* Then, the approximation will be exact for all locationsSy = S(Lq + Up) , oy
and nonzero inlocations S; = (S(A4) U S(Lg-Up)) \ S(Lo + Up)t.
) ) ) ) ) Add locations to

* Adding all these locations (level-fill!) might be good idea... sparsity pattern of

incomplete factors.

Fixed-point sweep
approximates
incomplete factors.
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Considerations

Select a set of nonzero locations. \

2. Compute values in those locations such that
A~ L-U isa “good” approximation.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

\ 4. Repeatuntil the preconditioner quality stagnates. ‘

Identify locations
with nonzero ILU
= [VEIR

* The sparsity pattern of A might be a good initial start for nonzero locations.

* Then, the approximation will be exact for all locationsSy = S(Lq + Up)
and nonzero inlocations S; = (S(A) U S(Lg - Uy)) \ S(Lo + Up)*.

* Adding all these locations (level-fill!) might be good idea, but adding these

will again generate new nonzero residuals Sy = (S(A) U S(Ly-Uy)) \ S(L1 + Uy)
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Fixed-point sweep
approximates
incomplete factors.

Compute ILU
residual & check
convergence.

Add locations to
sparsity pattern of

incomplete factors.
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Considerations

Select a set of nonzero locations. \

. . Identify locations
2. Compute values in those locations such that with nonzero ILU

A~ L -U isa “good” approximation. residual.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU
residual & check ©

convergence. ®q

\ 4. Repeatuntil the preconditioner quality stagnates. ‘ .

* At some point we should remove some locations again, e.g. the smallest elements, 9%
and start over looking at locations R = A — Ly - Uy, ... 5

Remove smallest Add locations to
elements from sparsity pattern of
incomplete factors. incomplete factors.

Select a threshold Fixed-point sweep
separating smallest approximates
elements. incomplete factors.

. .
-------
.....
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Considerations

Select a set of nonzero locations. \

. . Identify locations
2. Compute values in those locations such that with nonzero ILU

A~ L -U isa “good” approximation. residual.

3. Maybe change some locations in favor of
locations that result in a better preconditioner.

Compute ILU
residual & check ©

convergence. ®q

\ 4. Repeatuntil the preconditioner quality stagnates. ‘ .

* At some point we should remove some locations again, e.g. the smallest elements, 9%
and start over looking at locations R = A — Ly - Uy, ... 5

* We need another sweep, then...

Add locations to
elements from sparsity pattern of

incomplete factors. incomplete factors.

Remove smallest

. .
-------
.....
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Select a threshold
separating smallest
elements.

Fixed-point sweep
approximates
incomplete factors.
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ParlLUT

Interleaving fixed-point sweeps approximating values Identify locations

with pattern-changing symbolic routines. Withrzg’izzrlo ILu

Fixed-point sweep Compute ILU
approximates residual & check ©
incomplete factors. convergence. g
&
CbO

ParlLUT cycle | i

Add locations to
sparsity pattern of
incomplete factors.

Remove smallest
elements from
\ incomplete factors.

\

i SS':. E@.:.
'@.é@:':. .':.é%.‘- \
I . . . N
° &, Select a threshold Fixed-point sweep 5 o, N\
| "@-:-3"'@% separating smallest approximates e, 3
| iy elements. incomplete factors. '@é@@:@é}
i "::':;E. "::-@Eg@:.

—
\"b'...“
1

4\ .
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CG lterations

ParlLUT quality

—IC(0)

—ICT i
——ParlCT
50 r 1
40 1
30 1
20 1
10 1
0 1 1 1 1
0 2 4 6 8 10

Number of ParlCT steps (2 sweeps per step)

Top-level solver iterations as quality metric.

Few sweeps give a “better” preconditioner than ILU(O).

Better than ILUT?
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Anisotropic fluid flow problem
n: 741, nz: 4,951
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ParlLUT quality

Anisotropic fluid flow problem
n: 741, nz: 4,951

T T T — 10 [
—I1C(0) Q
—ICT 1 » 9
——ParlCT o sl
[0}
B o
g 7}
2
@50 1 2
S o 6
© o
T 40" 7 g O
(—5 %)
O30+ 1 o
s 3|
o
20 s
= 2f
(O]
107 ] € 1]
>
Z
0 1 1 1 1 O 1 1 1
0 2 4 6 8 10 0 500 1000 1500
Number of ParICT steps (2 sweeps per step) ILU(0) Pattern discrepancy ILUT

* Top-level solver iterations as quality metric.
* Few sweeps give a “better” preconditioner than ILU(O).
e Better than ILUT?
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ParlLUT quality

Anisotropic fluid flow problem
n: 741, nz: 4,951

T T T 10 T T
—1C(0) g ——ParlCT
—ICT | w 9f 1
——ParlCT o sl |
(2]
| )
8 7t 1
2 5 R n
5 « 6f ’
S 40 - 1 g © ]
; ®
O30 - O 4 |
s 3} 1
20| =
- 2F B
IS
10 [ 1 e 1} 1
>
Z
0 1 1 1 1 O 4 1 1 1
0 2 4 6 8 10 0 500 1000 1500
Number of ParICT steps (2 sweeps per step) ILU(0) Pattern discrepancy ILUT
* Top-level solver iterations as quality metric. * Patternstagnates after few sweeps.
* Few sweeps give a “better” preconditioner than ILU(O). * Pattern “more like” ILUT than ILU(O).

e Better than ILUT?
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ParlLUT

Interleaving fixed-point sweeps approximating values Identify locations

with pattern-changing symbolic routines. Withrzg’izzrlo ILu

Fixed-point sweep Compute ILU
approximates residual & check ©
incomplete factors. convergence. g
&
CbO

ParlLUT cycle | i

Add locations to
sparsity pattern of
incomplete factors.

Remove smallest
elements from
\ incomplete factors.

\

i SS':. E@.:.
'@.é@:':. .':.é%.‘- \
I . . . N
° &, Select a threshold Fixed-point sweep 5 o, N\
| "@-:-3"'@% separating smallest approximates e, 3
| iy elements. incomplete factors. '@é@@:@é}
i "::':;E. "::-@Eg@:.

—
\"b'...“
1

4\ .
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with pattern-changing symbolic routines.

Interleaving fixed-point sweeps approximating values

ParlLUT — a parallel threshold ILU

Fixexl- poini «vv2ep
cEEradnines
Incean) £t2 faziors.

Renime sina’last
eern2nisirm
inccrap.etz falors.

. .
ooooooo
.....
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Fixid ok gcinhvaep

Parallelism inside the building blocks.

Ccrndinie ‘LU
residlinil ¢z check

ParlLUT cycle
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Intel Xeon Phi 7250 “Knights Landing”

(’ Sca Iablllty 68 cores @1.40 GHz,
/ ‘ 16GB MCDRAM @490 GB/s
g thermal2 matrix from SuiteSparse, RCM ordering, & el/row.
70 T T T T T T
CSC— CSR VA Bl CSC <+ CSR
g0 | [ Candidates X | 0.9 § Il Candidates
¢ Residuals = [IResiduals
* ILU-norm : 0.8 NEILU-norm
50| < CSR— CSC L G . 0
+ Add A/ BN c
o A Sweep1 R S0
>407| o Select2Rm X8 | 3
© ) =
D x Remove XD : o 0.
S v oo il S
n 307 X -4 _ = i g 0
5V A 7 =R
:':"~’ w7 o
20 v g 0.
0.
10+
0.
0 - Il Il Il Il Il Il
0 10 20 30 40 50 60 70 10 20 30 40 50 60

Number of Threads Number of Threads

* Building blocks scale with 15% - 100% parallel efficiency.
* Transposition and sort are the bottlenecks.

* Overall speedup ~35x when using 68 KNL cores.
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k Intel Xeon Phi 7250 “Knights Landing”

' Sca Iablllty 68 cores @1.40 GHz,
% topopt120 matrix from topology optimization, 67 el/row.

16GB MCDRAM @490 GB/s
«f
70 T T
CSC— CSR y BlCSC « CSR
Candidates KA | -9 Nl Candidates
Residuals P [ Residuals
ILU-norm . a © W ILU-norm
50 CSR— CSC V- /8
Add ¢ ’
Sweep1 o / .
o o il .
=] Select2Rm % ;
ie] & %
D Remove = = .
& 30 S : :
2 ,4.17/ —F ) ’
20 oA * -

0 10 20 30 40 50 60 70 10 20 30 40 50 60
Number of Threads Number of Threads

(o}
o
* <0

N
o
4 x0OpP+

Runtime fraction

* Building blocks scale with 15% - 100% parallel efficiency.
* Dominated by candidate search.

* Overall speedup ~52x when using 68 KNL cores.
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Performance

Runtime of 5 ParILUT / ParICT steps and speedup over SuperLU ILUT".

Intel Xeon Phi 7250 “Knights Landing”

68 cores @1.40 GHz,

16GB MCDRAM @490 GB/s

ani7 2D Anisotropic Diffusion 203,841 1,407,811 10.48s 0.45s 23.34 0.30s 35.16
apache2 Suite Sparse Matrix Collect. 715,176 4,817,870 6.74 62.27 s 1.245s 50.22 0.65s 95.37
cagell Suite Sparse Matrix Collect. 39,082 559,722  14.32 60.89s 0.54s 112.56 -
jacobianMat9 Fun3D Fluid Flow Problem 90,708 5,047,042 55.64 153.84s 7.26s 21.19 --
thermal2 Thermal Problem (Suite Sp.) 1,228,045 8,580,313 6.99 91.83s 1.23s 74.66 0.68s 134.25
tmt_sym Suite Sparse Matrix Collect. 726,713 5,080,961 6.97 53.42s 0.70s 76.21 0.41s 131.25
topopt120 Geometry Optimization 132,300 8,802,544  66.53 44,22 s 14.40s 3.07 8.24s 5.37
torso2 Suite Sparse Matrix Collect. 115,967 1,033,473 8.91 10.78s  0.27s 39.92 --
venkatO1 Suite Sparse Matrix Collect. 62,424 1,717,792  27.52 8.53s 0.74s 11.54 -

“We thank Sherry Li and Meiyue Shao for technical help in generating the performance numbers. / ;
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How about GPUs?

Fixed-point sweep
approximates
incomplete factors.

elements from

|
|
|
! Remove smallest
|
} incomplete factors.

Select a threshold
separating smallest
elements.

ParILUT - A Parallel Threshold ILU for GPUs

Hartwig Anzt*t, Tobias Ribizel*, Goran Flegarf, Edmond Chow?!, Jack Dongarrat9l
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
TInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

{Departamento de Ingenieria y Ciencia de Computadores, Universidad Jaume I Castellén, Spain
§School of Computational Science and Engineering, Georgia Institute of Technology, USA
YUniversity of Manchester, Manchester, UK
lOak Ridge National Lab (ORNL), Oak Ridge, USA
hartwig.anzt @kit.edu, tobias.ribizel@student.kit.edu, flegar@uji.es, echow@cc.gatech.edu, dongarra@icl.utk.edu

Identify locations
with nonzero ILU
residual.

Compute ILU
residual & check
convergence.

ParlLUT cycle

Accepted for IPDPS 2019

Add locations to
sparsity pattern of
incomplete factors.

Fixed-point sweep
approximates
incomplete factors.
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How about GPUs?

Fine-grained parallelism

e High bandwidth for coalescent reads

* No deep cache hierarchy

* We need to oversubscribe cores for hiding latency

ParILUT - A Parallel Threshold ILU for GPUs

Hartwig Anzt*f, Tobias Ribizel*, Goran Flegar!, Edmond Chow?, Jack Dongarraf ¥l
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
TInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

{Departamento de Ingenieria y Ciencia de Computadores, Universidad Jaume I Castellén, Spain
§School of Computational Science and Engineering, Georgia Institute of Technology, USA
YUniversity of Manchester, Manchester, UK
lOak Ridge National Lab (ORNL), Oak Ridge, USA
hartwig.anzt @kit.edu, tobias.ribizel@student.kit.edu, flegar@uji.es, echow@cc.gatech.edu, dongarra@icl.utk.edu

Accepted for IPDPS 2019

Part of the ParlLUT algorithm requires selecting the smallest k values for removal.

Selection and Sorting algorithms very inefficient on GPUs...
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How about GPUs? ParILUT - A Parallel Threshold ILU for GPUs

Hartwig Anzt*!, Tobias Ribizel*, Goran Flegar!, Edmond Chow?¢, Jack Dongarrat¥l
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
fInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

FI ne-g ra | ned pa ra | |e| ism tDepamunento de Ingenieria y Ciencia de Computadores, Universidad Jaume I Castellén, Spain
§School of Computational Science and Engineering, Georgia Institute of Technology, USA

* High bandwidth for coalescent reads o a:;ﬂ;:'ﬁgﬁgwm‘fg‘g&g“gfﬁ;%s N

hartwig.anzt @kit.edu, tobias.ribizel@student.kit.edu, flegar@uji.es, echow@cc.gatech.edu, dongarra@icl.utk.edu

* No deep cache hierarchy

« We need to oversubscribe cores for hiding latency Accepted for IPDPS 2019

Part of the ParlLUT algorithm requires selecting the smallest k values for removal.

Pick splitters WWH%IMWTH

SampleSelect:

Sort splitters o [ [
Group by bucket mﬂmmmm

Select bucket t

Pick splitters D

Sort splitters nnl

Group by bucket
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How about GPUs? ParILUT - A Parallel Threshold ILU for GPUs

Hartwig Anzt*!, Tobias Ribizel*, Goran Flegar!, Edmond Chow?¢, Jack Dongarrat¥l
*Steinbuch Centre for Computing, Karlsruhe Institute of Technology, Germany
fInnovative Computing Lab (ICL), University of Tennessee, Knoxville, USA

F| ne-g ra | ned pa ra | |e| ism Departamento de Ingenieria y Ciencia de Computadores, Universidad Jaume 1 Castellén, Spain

§School of Computational Science and Engineering, Georgia Institute of Technology, USA

* High bandwidth for coalescent reads o a:gﬂ;z’ﬂgﬁgwmfg‘m“gﬁsﬁ;%s N

hartwig.anzt @kit.edu, tobias.ribizel@student.kit.edu, flegar@uji.es, echow@cc.gatech.edu, dongarra@icl.utk.edu

* No deep cache hierarchy

* We need to oversubscribe cores for hiding latency Accepted for IPDPS 2019
Part of the ParlLUT algorithm requires selecting the smallest k values for removal.
bt AT [T lell
Pick splitters
SampleSelect: -~ 081 X |
Sort splitters i 0 0 E %“
mlﬂﬂﬂﬂmmmn 067",
Group by bucket E /
¢ S 0l
Select bucket g 04 "
&
Pick splitters D g‘ 0.2 1
£ " | =~ Approximate selection
Sort splitters nnl -@- Exact selection
0.0 T T T
Group by bucket mniin 0.0 0.2 0.4 0.6 0.8

relative approximation error (/41— x| o)
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Impact of exact/approximate SampleSelect on ParlLUT preconditioner quality
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ParILUT - A Parallel Threshold ILU for GPUs

ANI5
300 —ILU(0) 1
A\ -% ParlLUT-GPU w. exact Sampleselect |
2R = ParlLUT-GPU w. approx. Sampleselect |-
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! ‘ | "‘":sk
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ParlLUT steps
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ParILUT - A Parallel Threshold ILU for GPUs

Impact of exact/approximate SampleSelect on ParlLUT runtime breakdown

—

Bl CSC + CSR
[ ICandidates
[ Residual
"/l Add

[ ISweeps

I Select

| I Remove
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©
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Matrices taken from Suite Sparse Matrix Collection.
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ParILUT - A Parallel Threshold ILU for GPUs

ParILUT performance across different GPU generations: 1%t bar: NVIDIA K40
2d bar: NVIDIA P100
34 bar: NVIDIAV100
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Matrices taken from Suite Sparse Matrix Collection.
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ParlLUT Performance across architectures

— | | | | [
S 10%- X x ParlLUT-OMP on KNL |
c - ¢ ParlLUT-GPU on K40 |-
S — X g X | A ParlLUT-GPU on P100/]
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Matrices taken from Suite Sparse Matrix Collection.
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Is this a future-oriented algorithm?

Hybrid ParILUT version utilizing GPU and CPU,
overlapping communication & computation.

Asynchronous version relaxing dependencies.

Use a different sparsity-pattern generator:

e Randomized?

* Machine learning techniques?

Increasing fill-in towards “full” factorization.

ParILUT routines available in MAGMA-sparse —they will be in Ginkgo.

This research was sponsored by:
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The Exascale Computing Project

A Collaborative effort of the U.S. Department of
Energy Office of Science And the National
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Test matrices

Matrix Origin SPD  Num. Rows Nz  Nz/Row
ANIS 2D anisotropic diffusion yes 12,561 86,227 6.86
ANIO 2D anisotropic diffusion yes 50,721 349,603 6.89
ANI7 2D anisotropic diffusion yes 203,841 1,407,811 6.91
APACHEL Suite Sparse [10] yes 80,800 542,184 6.71
APACHE2 Suite Sparse yes 715,176 4,817,870 6.74
CAGE10 Suite Sparse no 11,397 150,645 13.22
CAGEL1 Suite Sparse no 39,082 559,722 14.32
JACOBIANMATO Fun3D fluid flow [20] no 90,708 5,047,017 55.64
JACOBIANMAT9 Fun3D fluid flow no 90,708 5,047,042 55.64
MAJORBASIS Suite Sparse no 160,000 1,750,416 10.94
TOPOPTO10 Geometry optimization [24] yes 132,300 8,802,544 66.53
TOPOPTO60 Geometry optimization yes 132,300 7,824,817 59.14
TOPOPT120 Geometry optimization yes 132,300 7,834,644 59.22
THERMALI1 Suite Sparse yes 82,654 574,458 6.95
THERMALZ Suite Sparse yes 1,228,045 8,580,313 6.99
THERMOMECH_TC Suite Sparse yes 102,158 711,558 6.97
THERMOMECH_DM  Suite Sparse yes 204,316 1,423,116 6.97
TMT_SYM Suite Sparse yes 726,713 5,080,961 6.99
TORSO?2 Suite Sparse no 115,967 1,033,473 8.91
VENKATO1 Suite Sparse no 62,424 1,717,792 27.52
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Convergence: GMRES iterations

ParILUT
Matrix no prec. | ILU(0) | ILUT 0 1 2 3 4 5
ANIH 882 172 78 278 161 105 84 74 66
ANIO 1,751 391 127 547 315 211 168 143 131 |
ANI7 3,499 828 290 | 1,083 641 459 370 318 289 |
CAGE10 20 8 8 9 7 8 8 8 8 |
CAGE11 21 9 8 9 7 7 7 7 7
JACOBIANMATO 315 40 34 63 36 33 33 33 33
JACOBIANMAT9 539 66 65 110 60 55 54 53 53
MAJORBASIS 95 15 9 26 12 11 11 11 11
TOPOPTO10 2,399 565 303 835 492 375 348 340 339
TOPOPTO60 2,852 666 397 963 584 445 417 412 410
TOPOPT120 2,765 668 396 959 584 445 416 408 408
TORSO2 46 10 7 18 8 6 7 7 7
VENKATO1 195 22 17 42 18 17 17 17 17
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Convergence: CG iterations

ParICT
Matrix no prec. | 1C(0) ICT 0 1 2 3 4 5
ANIH 951 226 — 297 184 136 108 93 86
ANIG 1,926 621 - 595 374 275 219 181 172
ANIT7 3,895 | 1,469 — 1 1,199 753 559 455 405 377
APACHE] 3,727 368 331 | 1,480 933 517 321 323 323
APACHE2 4,574 | 1,150 785 | 1,890 1,197 799 766 760 754
THERMALI 1,640 453 412 626 447 409 389 385 383
THERMAL2 6,253 | 1,729 | 1,604 | 2,372 1,674 1,503 1,457 1,472 1,433
THERMOMECH_DM 21 8 8 8 7 7 7 7 7
THERMOMECH_TC 21 8 7 8 7 7 7 7 7
TMT_SYM 5,481 | 1,453 | 1,185 | 1,963 1,234 1,071 1,012 992 1,004
TOPOPTO10 2,613 692 331 845 551 402 342 316 313
TOPOPTO60 3,123 871 — 988 749 693 1,116 — —
TOPOPT120 3,062 886 — 991 837 784 2,185 — —
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with pattern-changing symbolic routines.

Interleaving fixed-point sweeps approximating values

Is this a future-oriented algorithm?

Fixexl- poini «vv2ep
cEEradnines
Incean) £t2 faziors.

Renime sina’last
eern2nisirm
inccrap.etz falors.

. .
ooooooo
.....
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Selazi 1 theshold
sepaletirgirnallest
AENMNANS,

Idertfy/ loceticns
witki adazerc/ILU

Lo Al
(270043,

IncLingaiz fiz0rs.

Fixid ok gcinhvaep

Parallelism inside the building blocks.

Ccrndinie ‘LU
residlinil ¢z check

ParlLUT cycle

Adid > iions o
spaisity pieitterr of
INCO A jA2 A, 2CLIrs.

cEEroXnules
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Is this a future-oriented algorithm?

Parallel Task | Parallel Task Il Parallel Task IlI

Idertfy/ loceticns
witki adazerc/ILU

Lo Al
(270043,

Ccrndinie ‘LU
residlinil ¢z check ©

Fixexl- poini «vv2ep
cEEradnines
Incean) £t2 faziors.

Bulk-Synchronous Algorithm!

...see John Shalf on Thursday...

ParlLUT cycle n o

Adid > iions o
spaisity pieitterr of
INCO A jA2 A, 2CLIrs.

Renime sina’last
eern2nisirm
inccrap.etz falors.

Selz:iatheshold Fixid ok gcinhvaep
sepaletirgirnallest cEifiroX nhilies
260 MANS, IncLingaiz fiz0rs.

. .
ooooooo
.....
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Is this a future-oriented algorithm?

Para[lel Taskl Parallel Task Il Parallel Task Il
Master Thread Identify locations
\, ' & BN 4 with nonzero ILU
—G———*—_-%---D—G’ _ ’?—q\\ .
. | o — residual.
s T . - Fixed'pOint sweep Compute ILU
approximates residual & check ©
i Ro)
. incomplete factors. convergence. %
Bulk-Synchronous Algorithm! &
O
OOO

ParlLUT cycle | .

Remove smallest
elements from
incomplete factors.

Do we need that?

Add locations to
sparsity pattern of
incomplete factors.

Select a threshold Fixed-point sweep
separating smallest approximates
elements. incomplete factors.

. .
.......
.....
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Is this a future-oriented algorithm?

Para[lel Taskl Parallel Task Il Parallel Task Il
Master Thread 2 : ‘ e : Identify locations :
\, g -\ V4 AN with nonzero ILU Dependencies
N _' N T o P residual.
L P \ -: /, “'“"
s T . - Fixed'pOint sweep Compute ILU
approximates residual & check ©
i Ro)
. incomplete factors. convergence. %
Bulk-Synchronous Algorithm! &
O
OOOO
oO
%
o

. .
ooooooo
.....

ParlLUT cycle ,, o

Add locations to
sparsity pattern of
incomplete factors.

Do we need that?

Remove smallest
elements from

incomplete factors.

Select a threshold Fixed-point sweep
separating smallest approximates
elements. incomplete factors.

. .
.......
.....
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Is this a future-oriented algorithm?

approximates

. incomplete factors.
Bulk-Synchronous Algorithm! :

. .
ooooooo
.....

Do we need that?

Remove smallest
elements from

incomplete factors.

Select a threshold
separating smallest
elements.

. .
.......
.....
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Parallel Task | Parallel Task Il Parallel Task IlI
Master Thread / f ‘  — . Identify locations
\1 & o A V4 AN with nonzero ILU
FE . - leed_pOInt Sweep

ParlLUT cycle

Compute ILU
residual & check

convergence.

Add locations to
sparsity pattern of

Dependencies

incomplete factors.

Fixed-point sweep
approximates
incomplete factors.
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Parallel Task | Parallel Task Il Parallel Task IlI
Master Thread / ’;F-_i\\ ?-_é\\ .....................
S - e

Bulk-Synchronous Algorithm!

. .
ooooooo
.....

Do we need that?

Is this a future-oriented algorithm?

Fixed-point sweep
approximates
incomplete factors.

Identify locations
with nonzero ILU

Remove smallest
elements from

incomplete factors.

. .
.......
.....
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Select a threshold
separating smallest
elements.

ParlLUT cycle

Compute ILU
residual & check
convergence.

Add locations to
sparsity pattern of

Dependencies

incomplete factors.

Fixed-point sweep
approximates
incomplete factors.
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Is this a future-oriented algorithm?

Eara[lel Task | Pa.ra]]el.Ta.sk.ll Parallel Task IlI
Master Thread - - . p— 3 Identify locations Dependencies
\1 f Y 4 : with nonzero ILU
—’_'—“- ”—' residual.

................ r Fixed-point sweep
approximates

. incomplete factors.
Bulk-Synchronous Algorithm! :

Do we need that?
Remove smallest

elements from
incomplete factors.

Select a threshold
separating smallest
elements.

. .
.......
.....

Compute ILU

residual & check
convergence.

Add locations to
sparsity pattern of
incomplete factors.

Fixed-point sweep
approximates
incomplete factors.
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Is this a future-oriented algorithm?

Compute ILU
residual & check
Identify locations convergence.
with nonzero ILU

residual. ] | ]
Add locations to Fixed-point sweep

sparsity pattern of approximates
incomplete factors. incomplete factors.

Strong dependency — we can not start before finished.
Weak dependency — if we start before: +/- few nonzeros.
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Is this a future-oriented algorithm?

Compute ILU Select a threshold

residual & check separating smallest
Identify locations convergence. elements.

with nonzero ILU
residual.

Add locations to Fixed-point sweep Remove smallest Fixed-point sweep
sparsity pattern of approximates elements from approximates
incomplete factors. incomplete factors. incomplete factors. incomplete factors.

Strong dependency — we can not start before finished.
Weak dependency — if we start before: +/- few nonzeros.

N

|
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/I/V*:‘ Is this a future-oriented algorithm?

Compute ILU Select a threshold
residual & check separating smallest
|dentify locations convergence. elements.

with nonzero ILU

residual.
Add locations to Fixed-point sweep Remove smallest Fixed-point sweep

sparsity pattern of approximates elements from approximates
incomplete factors. incomplete factors. incomplete factors. incomplete factors.

Compute ILU
residual & check

Strong dependency — we can not start before finished. Identify locations convergence.

Weak dependency — if we start before: +/- few nonzeros. Withr:;féﬁ:flo ILU

Add locations to
sparsity pattern of
incomplete factors.
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/I/V*:‘ Is this a future-oriented algorithm?

Compute ILU Select a threshold
residual & check separating smallest
|dentify locations convergence. elements.
with nonzero ILU
residual.

Add locations to Fixed-point sweep Remove smallest Fixed-point sweep
sparsity pattern of approximates elements from approximates
incomplete factors. incomplete factors. incomplete factors. incomplete factors.

Compute ILU
residual & check

Strong dependency — we can not start before finished. Identify locations convergence.

Weak dependency — if we start before: +/- few nonzeros. Withr:;féﬁ:flo ILU

Add locations to

sparsity pattern of
incomplete factors.

Excellent candidate for hybrid hardware?
Asynchronous execution?

04/16/18 Hartwig Anzt: ParlLUT - A New Parallel Threshold ILU




