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Why are we doing this? Do we need it? How is it different from dense BLAS?

Dense linear algebra
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Why are we doing this? Do we need it? How is it different from dense BLAS?

Dense linear algebra : e L

All entries are stored explicitly
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i * Only nonzero values are stored explicitly
( and sometimes also zeros for performance reasons
or because the matrix changes over time and a zero
becomes nonzero )
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Why are we doing this? Do we need it? How is it different from dense BLAS?
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e All entries are stored explicitly i * Only nonzero values are stored explicitly

* One standard format (excpt. for row/col major) i * Different formats: COO, CSR, ELL, DIA...
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Why are we doing this? Do we need it? How is it different from dense BLAS?

0

Dense linear algebra - L Sparse linear algebra ::] L
: 0

e All entries are stored explicitly i * Only nonzero values are stored explicitly

* One standard format (excpt. for row/col major) i * Different formats: COO, CSR, ELL, DIA...

* Elements are stored in sorted order * Not always sorted

E.g. when elements are added in COOQ,
or if diagonal elements are stored first, etc.
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Why are we doing this? Do we need it? How is it different from dense BLAS?

Dense linear algebra . L Sparse linear algebra ::] co
e All entries are stored explicitly i * Only nonzero values are stored explicitly
* One standard format (excpt. for row/col major) i * Different formats: COO, CSR, ELL, DIA...

* Elements are stored in sorted order i * Not always sorted
* Vectors and matrices are conceptually the same i * Vectors use a different storage format

Sparse Vector

0 12 0 24 0

Index 0 1 2 3 4

l

Dense Vector 111201 3 12416 | 9

/

Index Value
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Why are we doing this? Do we need it? How is it different from dense BLAS?

Dense linear algebra : e L

e All entries are stored explicitly

* One standard format (excpt. for row/col major)
* Elements are stored in sorted order

* Vectors and matrices are conceptually the same
* Size of output is known upfront -> single kernel

Sparse linear algebra : ::] e L
0

* Only nonzero values are stored explicitly
* Different formats: COO, CSR, ELL, DIA...
* Not always sorted
* Vectors use a different storage format
* Generally, the memory requirement is not known before
(e.g. sparse matrix multiply)
1) symbolic phase
2) memory allocation
3) numeric phase
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Why are we doing this? Do we need it? How is it different from dense BLAS?

Dense linear algebra : e L

e All entries are stored explicitly

* One standard format (excpt. for row/col major)
* Elements are stored in sorted order

* Vectors and matrices are conceptually the same
* Size of output is known upfront -> single kernel
* Fortran/C interface adopted by most vendors

Sparse linear algebra : ::] e L
0

* Only nonzero values are stored explicitly

* Different formats: COO, CSR, ELL, DIA...

* Not always sorted

* Vectors use a different storage format

* Generally, the memory requirement is not known before

* Vendors increasingly use a C++ interface, no agreement
Plethora of options makes a C-interface “impossible”
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Why are we doing this? Do we need it? How is it different from dense BLAS?

Dense linear algebra : e L

e All entries are stored explicitly

* One standard format (excpt. for row/col major)
* Elements are stored in sorted order

* Vectors and matrices are conceptually the same
* Size of output is known upfront -> single kernel
* Fortran/C interface adopted by most vendors

e Exceptions are clearly handled

Sparse linear algebra : ::] e L
0

* Only nonzero values are stored explicitly
* Different formats: COO, CSR, ELL, DIA...
* Not always sorted
* Vectors use a different storage format
* Generally, the memory requirement is not known before
* Vendors increasingly use a C++ interface, no agreement
* No consistent handling of NaN/Inf:
What if an implicit matrix zero is multiplied with a NaN?
Checking for NaN in the vector introduces overhead

0 = ... = Noedy
0 = ... 0O "
7

00 ... = *)
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The working group

Cross-Institutional working group, loose collaboration, not everyone attends every meeting, workshops, SC 2024 BoF;
(Vendor) library developers, Application specialists, standard enthusiasts;
Weekly virtual meetings, Sparse BLAS design proposal is working document;

Intel Corporation

NVIDIA

AMD

Arm

MathWorks

University of California, Berkeley
Intel Labs

ORNL,

Karlsruhe Institute of Technology
LLNL

Sandia National Laboratories
MIT

..

15t Sparse BLAS workshop, 2023

2d Sparse BLAS workshop, 2024

\ \
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The working group

Cross-Institutional working group, loose collaboration, not everyong
(Vendor) library developers, Application specialists, standard enthu
Weekly virtual meetings, Sparse BLAS design proposal is working dc

_

15t Sparse BLAS workshop, 2023

2"d Sparse BLAS work

September 19, 2024
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But there already is a sparse BLAS standard?

Sparse extensions to the FORTRAN Basic Linear Algebra Subprograms

Authors: David S. Dodson, Roger G. Grimes, John G. Lewis Authors Info & Claims

ACM Transactions on Mathematical Software (TOMS), Volume 17, Issue 2 « Pages 253 - 263 = https://doi.org/10.1145/108556.108577

’.) Check for updates

Published: 01 June 1991 Publication Histor

o o An overview of the sparse basic linear algebra subprograms: The new standard
21 {

from the BLAS technical forum

—
Authors: lain S. Duff, Q Michael A. Heroux, Roldan Pozo Authors Info & Claims

ACM Transactions on Mathematical Software (TOMS), Volume 28, Issue 2 » Pages 239 - 267 « hitps://doi.org/10.1145/567806.567810

Published: 01 June 2002 Publical " CHHARTICL

Object-Oriented Techniques for Sparse Matrix Computations in Fortran

79 93 A 1,797 2003
1 Authors Salvatore Fllippone Alfredo Buttari Authors Info & Claims
ons on Mathematical Software (TOMS), Volume 38, Issue 4 « Article No.: 23, Pages 1 - 20
hitps.//dolorg/10.1145/2331130.2331131
) Check fo ate
Published: 01 August 2012 Publication History W) Check for updates

Not only one...

Designed in a pre-GPU era
Not adopted by GPU libraries
Al needs other functionality
New C++ standard features

Xinw f =

24 M 435 ® [ 4 1] B PDF ‘
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Should libraries own the sparse objects or a non-owning interface?

* Owning allows for more optimization as the opaque object can use any storage format
* Owning makes it impossible for the user to easily access the data or modify the data

* Packing/Unpacking routines introduce overhead — maybe error prone?
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Owning or non-owning?

* Owning allows for more optimization as the opaque object can use any storage format
* Owning makes it impossible for the user to easily access the data or modify the data

* Packing/Unpacking routines introduce overhead — maybe error prone?

Most use cases want to apply operation to application-owned data.

--> We decide to go for light-weight “views” of the data
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Light-weight views with additional data?

* Owning allows for more optimization as the opaque object can use any storage format
* Owning makes it impossible for the user to easily access the data or modify the data

* Packing/Unpacking routines introduce overhead — maybe error prone?

Most use cases want to apply operation to application-owned data.

--> We decide to go for light-weight “views” of the data
- Very limited optimization potential
- Where can we store additional matrix information?
- Create a copy?

--> We add a “"bag” to the “view” for additional data



Light-weight views with additional data?

* Owning allows for more optimization as the opaque object can use any storage format
* Owning makes it impossible for the user to easily access the data or modify the data

* Packing/Unpacking routines introduce overhead — maybe error prone?

Most use cases want to apply operation to application-owned data.

--> We decide to go for light-weight “views” of the data
- Very limited optimization potential
- Where can we store additional matrix information?
- Create a copy?

--> We add a “"bag” to the “view” for additional data
- matrixHandle
- How should the space for additional data be allocated?



Library-internal data allocation

* Some applications want to control all GPU memory with theirallocator (Matlab, etc.)

* We need the possibility to pass this al locator to the library

* Ifnoallocator ispassed tothe library, the standard allocator is used

using namespace sparseblas;

csr_view<float> A_view(values, rowptr, colind, shape, nnz);
// create a handle to hold some internal stuff more than view
matrix_handle A(A_view, allocator);

9/24/24 SNL ws hororing Mike Heroux
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Which data format?

* We focus on the most universal and popular formats: CSR, CSC, COO

* We handle dense matrices/vectors as C++20 mdspan

Description

Type Name Description
index_type nrows Number of rows of the matrix
index_type ncols Number of columns of the matrix
offset_type nnz Structural number of non-zeros
offset._type array  rowptr Row pointer array (length: nrows+1)
index_type array colindx Column indices array (length: nnz)
scalar_type array  values Structural values (length: nnz)
base_type index.base Base indexing
Table 2: CSR input parameters
9/24/24

Type Name
index_type nrows
index_type ncols
offset_type nnz
index_type array rowindx
index_type array colindx

scalar_type array values

base_type

index_base

Number of rows of the matrix
Number of columns of the matrix
Structural number of non-zeros
Row index array (length: nnz)
Column index array (length: nnz)
Structural values (length: nnz)
Base indexing

SNL ws hororing Mike Heroux
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Which operations?

9/24/24

Operation Notation

Scaling A:=aA
Transpose and Conjugate Transpose A:=AT A:= AH
Infinity Matrix Norm a = ||A||inf
Frobenius Matrix Norm a:=||A||r
Element-wise Multiplication C=A.%B
Sparse Matrix — Sparse Matrix Addition C:=A+B
Sparse Matrix — Sparse Matrix Multiplication C:=A-B+ D
Sparse Matrix — Dense Matrix Multiplication Y :=A.-X+4Y
Sparse Matrix — Dense Vector Multiplication y=A-x

Triangular Solve

Sparse Matrix Format Conversion
Predicate Selection

Sampled dense dense matrix multiplication

Solve A-x =y for z
B = sparse(A)

B = A(predicate)
C(mask) = A-B

Table 1: List of the Sparse BLAS functionalities. Uppercase letters represent
matrices; lowercase represent vectors. Letters from the start of the alphabet
are used for sparse matrices/vectors; letters from the end are used for dense
matrices/vectors. « is a scalar value. Note that scaling may be applied to any
input matrix/vector, and the transpose/conjugate transpose operation may be

applied to any input matrix.

SNL ws hororing Mike Heroux
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What if an operation needs temporary buffers?

* An operation takes a st ate object that can contain temporary buffers
* Some applications want to control all GPU memory with their al locator (Matlab, etc.)
* We need the possibility to pass this al locator to the library

e Ifnoallocator ispassed to the library, the standard allocator is used — also in the state object

using namespace sparseblas;

csr_view<float> A(values, rowptr, colind, shape, nnz); What is the execution pOIICy?

, * Handles the execution
// scale() overwrites the values of A

scale_state_t state(allocator); (like a ROCm/CUDA stream, sycl queue)
scale(policy, state, 2.3, A);
» Sequential / parallel

Listing 1: Scaling, A := oA * Synchronous / asynchronous
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Preserving explicit zeros?

Storing zeros explicitly can have advantages:

Block-sparse matrix: sparse matrix with dense blocks (excluded for now?)
Matrix entries change over the application time, zeros become nonzero

Better performance through padding (cache line, coalesced access...)

What if we convert from one format to another? Do we preserve the explicit zeros?

e Current discussion: yes, conversion preserves zeros, except for conversion from dense.

9/24/24 SNL ws hororing Mike Heroux
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How about NaN propagation?

* Checking right-hand-side for NaN/Inf by default is too expensive n r:] " )
e This leads to inconsistency:
a format storing an explicit zero will get a different result than a format storing an implicit zero
* Plan for different execution modes:
* Permissive ( as fast as possible )
* Consistent ( check for NaN/Inf)

* Reproducible ( bitwise reproducibility )

9/24/24 SNL ws hororing Mike Heroux
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One-stage? Two-stage? Three-stage? Any consensus?

9/24/24

. inspect phase — (optional) prepare any potential optimizations for subse-

quent phases, or may do nothing

. compute phase — computing the size of the sparse output structure, which

typically requires significant work

. allocation phase — allocating the memory for the sparse output data struc-

ture and placing it in the output matrix object to be filled

. fill phase — complete execution of the operation and filling the output

structure with the result.

SNL ws hororing Mike Heroux
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One-stage? Two-stage? Three-stage? Any consensus?

using namespace sparseblas;
csr_view<float> A(values, rowptr, colind, shape, nnz);

// scale() overwrites the values of A
scale_state_t state(allocator);
(scale(policy, state, 2.3, A);]

Listing 1: Scaling, A := aA

9/24/24 SNL ws hororing Mike Heroux
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One-stage? Two-stage? Three-stage? Any consensus?

9/24/24

using namespace sparseblas;

csr_view<float> A(values, rowptr, colind, shape, nnz);
auto X = std::mdspan(raw_x.data(), k, n);
auto Y = std::mdspan(raw_y.data(), m, n);

float alpha = 1.1, beta = 1.2;

multiply_state_t state(allocator);

[multiply_inspect(policy, state, scaled(alpha, A), X, beta, Y)); // optional

[multiply_compute(policy, bind_info{scaled(alpha, A), info}, X, beta, Y);

[multiply_fiii(policy, bind_info{scaled(alpha, A), info}, X, beta, Y);

Listing 9: Sparse Matrix — Dense Matrix Multiplication, ¥ = aA - X + Y

SNL ws hororing Mike Heroux
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One-stage? Two-stage? Three-stage? Any consensus?

using namespace sparseblas;

csr_view<float> A_view(values, rowptr, colind, shape, nnz);
// create a handle to hold some internal stuff more than view
matrix_handle A(A_view, allocator);

// ... likewise for B, D

csr_view<float> C(m, n);

multiply_state_t state(allocator);
multiply_inspect(policy, state, transposed(A), ]
B, C, D); // optional
// it will store the transposed A in the matriz_handle
multiply_symbolic_compute(policy, state, transposed(A),
B, C; D); ]
index_t nnz = state.get_result_nnz();
// allocate C rowptr/colind arrays and put in C .
multiply_symbolic_fill(policy, state, scaled(alpha, transposed(A))]
B, C, scaled(beta, D));
// C structure is now able to be used

A

[multiply_numeric_compute(policy, state, transposed(4), ]

B, C, D);

index_t nnz = state.get_result_nnz();
// allocate C values arrays and put in C (Note: this can also be dope previously
// since nnz is already known from symbolic stage)
multiply_numeric_fill(policy, state, scaled(alpha, transposed(A)),

[ B, C, scaled(beta, D)); ]
/7 C structure and values are now able to be used -

— Can be combined

Listing 8: Sparse Matrix — Sparse Matrix Multiplication with matrix_handle,
C = a- AT - B + BD with separate symbolic and numeric stages

9/24/24 SNL ws hororing Mike Heroux
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How about out-of-place submatrices?

using namespace sparseblas;
csr_view<float> A_view(values, rowptr, colind, shape, nnz);
csr_view<float> B(values, rowptr, colind, shape, nnz);

auto x = std::mdspan(raw_x.data(), n);
auto b = std: :mdspan(raw_b.data(), m);

auto pred = [](auto i, auto j, auto v) {

return v > 0; _ '
3 Extract submatrix of non-negative values
3

auto pred = [](auto i, auto j, auto v) {
return (i < 10 ) && (j < 10);

¥ Extract first left-top 10x10 submatrix

filter_state_t state(allocator);

// matriz_handle %is opaque and may contain vendor optimization details
matrix_handle A(A_view, allocator);

[filter_compute(policy, state, A, B, pred); ]
// allocate arrays for B
[filter_fill(policy, state, A, B, pred); J
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Which precisions are relevant?

* Fp64, fp32, fpl6, bfl6 (+ complex variants)
* Mixed Precision (different inputs / outputs)

* Arithmetic precision is always the highest input/output precision (no performance loss)

Input Compute Output

— —

\

AHp » ADP -
= \
implicit L :|—>:YDp; Ysp
\ o

T

* Large number of routine variants -> C++ overloading
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C++ may be doable, but what about C and Fortran?

* Combinatorial complexity make a Fortran/C interface infeasible.

 Maybe an interface for the most relevant combinations?

* Vendors prefer using internally a C++ interface for their sparse routine interfaces.

9/24/24 SNL ws hororing Mike Heroux
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Aren’t the vendors already doing it anyway?

* Yes... and they are all going in similar directions — it is only a question of moderating the process...

oneMKL SYCL C++ API with an out-of-order queue (has an optional
optimize stage)
ev_gemv = oneapi::mkl::sparse::gemv(

queue, oneapi::mkl::transpose::nontrans,

alpha, csrA, x, beta, y, {ev_opt});

hipSPARSE ROCm/CUDA C API

status = hipsparseDcsrmv(handle,
HIPSPARSE_OPERATION_.NON_TRANSPOSE, | cuSPARSE CUDA C, generic API (has multiple required stages)

P N B hoc | status = cusparseSpMV(handle, CUSPARSE_OPERATION_NON_TRANSPOSE,
valA, rowptrA, colindA, x, p_beta, y);
p-alpha, matA, vecX, p_beta, vecY,

CUDA_R_64F, CUSPARSE_SPMV_ALG_DEFAULT,
externalBuffer);
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Anyway, what is a standard?

 Astandard is a standard because a significant portion of the community follows the same convention;

* We discuss how we do things in the different NLA libraries, and what the customers want;

* We try to find an interface that combines the good ideas;

* Ideally, we have vertical compatibility: efforts can adopt the interface we design w/o significant changes;

* We hope for horizontal compatibility (Fortran, C) but acknowledge this will be limited;

T

L

\\
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Anyway, what is a standard?

 Astandard is a standard because a significant portion of the community follows the same convention;

* We discuss how we do things in the different NLA libraries, and what the customers want;

* We try to find an interface that combines the good ideas;

* Ideally, we have vertical compatibility: efforts can adopt the interface we design w/o significant changes;

* We hope for horizontal compatibility (Fortran, C) but acknowledge this will be limited;

Working Toward an Interface for Sparse BLAS Event Type: Birds of a Feather

Description: While sparse matrix computations are at the heart of many scientific o Add T Sehadiils
and engineering applications, there exists no widely adopted interface

Next step: present the

interface design at a BoF standard. A reason for this may be the plethora of optimization options relevant Vime:
, . . Thursday, 21 November 2024
at SC and I’E’C]UESt feedback to today’s accelerator architectures. At the same time, many vendors already 12:15pm - 1:15pm EST

provide support for sparse matrix computations in proprietary libraries, but due
from the broader

to diverging architectural constraints, these libraries have different execution Location: B207
community. models, APls, and formats supported. We started a cross-institutional effort Registration Categories:
involving academia and industry to define an API for sparse linear algebra
operations. In the BoF, we present a blueprint and discuss considerations o
s s % 5 INKS:
motivating design choices. e
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