
Hartwig Anzt
TU Munich & Innovative Computing Lab, University of Tennessee

Sparse BLAS Working Group:
On the path to defining a standard for sparse BLAS operations

Ahmad Abdelfattah, Willow Ahrens, Hartwig Anzt, Chris Armstrong, Ben Brock, Aydin Buluc, Federico Busato, Terry Cojean, Tim
Davis, Jim Demmel, Grace Dinh, David Gardener, Jan Fiala, Mark Gates, Azzam Haider, Toshiyuki Imamura, Pedro Valero Lara, Jose
Moreira, Sherry Li, Neil Linquist, Piotr Luszczek, Max Melichenko, Yvan Mokwinski, Riley Murray, Spencer Patty, Slaven Peles, Tobias
Ribizel, Jason Riedy, Siva Rajamanickam, Piyush Sao, Manu Shantharam, Keita Teranishi, Stan Tomov, Yu-Hsiang Tsai, Heiko Weichelt

Why are we doing this? Do we need it? How is it different from dense BLAS?

9/24/24 SNL ws hororing Mike Heroux 2

Dense linear algebra Sparse linear algebra

Why are we doing this? Do we need it? How is it different from dense BLAS?

9/24/24 SNL ws hororing Mike Heroux 3

Dense linear algebra

• All entries are stored explicitly

Sparse linear algebra

• Only nonzero values are stored explicitly
(and sometimes also zeros for performance reasons
 or because the matrix changes over time and a zero
 becomes nonzero)

Why are we doing this? Do we need it? How is it different from dense BLAS?

9/24/24 SNL ws hororing Mike Heroux 4

Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)

Sparse linear algebra

• Only nonzero values are stored explicitly
• Different formats: COO, CSR, ELL, DIA…

Why are we doing this? Do we need it? How is it different from dense BLAS?

9/24/24 SNL ws hororing Mike Heroux 5

Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)
• Elements are stored in sorted order

Sparse linear algebra

• Only nonzero values are stored explicitly
• Different formats: COO, CSR, ELL, DIA…
• Not always sorted

E.g. when elements are added in COO,
or if diagonal elements are stored first, etc.

Why are we doing this? Do we need it? How is it different from dense BLAS?

9/24/24 SNL ws hororing Mike Heroux 6

Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)
• Elements are stored in sorted order
• Vectors and matrices are conceptually the same

Sparse linear algebra

• Only nonzero values are stored explicitly
• Different formats: COO, CSR, ELL, DIA…
• Not always sorted
• Vectors use a different storage format

Why are we doing this? Do we need it? How is it different from dense BLAS?

9/24/24 SNL ws hororing Mike Heroux 7

Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)
• Elements are stored in sorted order
• Vectors and matrices are conceptually the same
• Size of output is known upfront -> single kernel

Sparse linear algebra

• Only nonzero values are stored explicitly
• Different formats: COO, CSR, ELL, DIA…
• Not always sorted
• Vectors use a different storage format
• Generally, the memory requirement is not known before

(e.g. sparse matrix multiply)
 1) symbolic phase
 2) memory allocation
 3) numeric phase

Why are we doing this? Do we need it? How is it different from dense BLAS?

9/24/24 SNL ws hororing Mike Heroux 8

Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)
• Elements are stored in sorted order
• Vectors and matrices are conceptually the same
• Size of output is known upfront -> single kernel
• Fortran/C interface adopted by most vendors

Sparse linear algebra

• Only nonzero values are stored explicitly
• Different formats: COO, CSR, ELL, DIA…
• Not always sorted
• Vectors use a different storage format
• Generally, the memory requirement is not known before
• Vendors increasingly use a C++ interface, no agreement

Plethora of options makes a C-interface “impossible”

Why are we doing this? Do we need it? How is it different from dense BLAS?

9/24/24 SNL ws hororing Mike Heroux 9

Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)
• Elements are stored in sorted order
• Vectors and matrices are conceptually the same
• Size of output is known upfront -> single kernel
• Fortran/C interface adopted by most vendors
• Exceptions are clearly handled

Sparse linear algebra

• Only nonzero values are stored explicitly
• Different formats: COO, CSR, ELL, DIA…
• Not always sorted
• Vectors use a different storage format
• Generally, the memory requirement is not known before
• Vendors increasingly use a C++ interface, no agreement
• No consistent handling of NaN/Inf:

What if an implicit matrix zero is multiplied with a NaN?
Checking for NaN in the vector introduces overhead

The working group

9/24/24 SNL ws hororing Mike Heroux 10

1st Sparse BLAS workshop, 2023

2nd Sparse BLAS workshop, 2024

Intel Corporation
NVIDIA
AMD
Arm
MathWorks
University of California, Berkeley
Intel Labs
ORNL,
Karlsruhe Institute of Technology
LLNL
Sandia National Laboratories
MIT

Cross-Institutional working group, loose collaboration, not everyone attends every meeting, workshops, SC 2024 BoF;
(Vendor) library developers, Application specialists, standard enthusiasts;
Weekly virtual meetings, Sparse BLAS design proposal is working document;

The working group

9/24/24 SNL ws hororing Mike Heroux 11

1st Sparse BLAS workshop, 2023

2nd Sparse BLAS workshop, 2024

Intel Corporation
NVIDIA
AMD
Arm
MathWorks
University of California, Berkeley
Intel Labs
ORNL,
Karlsruhe Institute of Technology
LLNL
Sandia National Laboratories
MIT

Cross-Institutional working group, loose collaboration, not everyone attends every meeting, workshops, SC 2024 BoF;
(Vendor) library developers, Application specialists, standard enthusiasts;
Weekly virtual meetings, Sparse BLAS design proposal is working document;

But there already is a sparse BLAS standard?

9/24/24 SNL ws hororing Mike Heroux 12

• Not only one…
• Designed in a pre-GPU era
• Not adopted by GPU libraries
• AI needs other functionality
• New C++ standard features

Should libraries own the sparse objects or a non-owning interface?

9/24/24 SNL ws hororing Mike Heroux 13

• Owning allows for more optimization as the opaque object can use any storage format

• Owning makes it impossible for the user to easily access the data or modify the data

• Packing/Unpacking routines introduce overhead – maybe error prone?

Owning or non-owning?

9/24/24 SNL ws hororing Mike Heroux 14

• Owning allows for more optimization as the opaque object can use any storage format

• Owning makes it impossible for the user to easily access the data or modify the data

• Packing/Unpacking routines introduce overhead – maybe error prone?

Most use cases want to apply operation to application-owned data.

 --> We decide to go for light-weight “views” of the data

Light-weight views with additional data?

9/24/24 SNL ws hororing Mike Heroux 15

• Owning allows for more optimization as the opaque object can use any storage format

• Owning makes it impossible for the user to easily access the data or modify the data

• Packing/Unpacking routines introduce overhead – maybe error prone?

Most use cases want to apply operation to application-owned data.

 --> We decide to go for light-weight “views” of the data
 - Very limited optimization potential
 - Where can we store additional matrix information?
 - Create a copy?

 --> We add a ”bag” to the “view” for additional data

Light-weight views with additional data?

9/24/24 SNL ws hororing Mike Heroux 16

• Owning allows for more optimization as the opaque object can use any storage format

• Owning makes it impossible for the user to easily access the data or modify the data

• Packing/Unpacking routines introduce overhead – maybe error prone?

Most use cases want to apply operation to application-owned data.

 --> We decide to go for light-weight “views” of the data
 - Very limited optimization potential
 - Where can we store additional matrix information?
 - Create a copy?

 --> We add a ”bag” to the “view” for additional data
 - matrixHandle

 - How should the space for additional data be allocated?

Library-internal data allocation

9/24/24 SNL ws hororing Mike Heroux 17

• Some applications want to control all GPU memory with their allocator (Matlab, etc.)

• We need the possibility to pass this allocator to the library

• If no allocator is passed to the library, the standard allocator is used

Which data format?

9/24/24 SNL ws hororing Mike Heroux 18

• We focus on the most universal and popular formats: CSR, CSC, COO

• We handle dense matrices/vectors as C++20 mdspan

Which operations?

9/24/24 SNL ws hororing Mike Heroux 19

What if an operation needs temporary buffers?

9/24/24 SNL ws hororing Mike Heroux 20

• An operation takes a state object that can contain temporary buffers

• Some applications want to control all GPU memory with their allocator (Matlab, etc.)

• We need the possibility to pass this allocator to the library

• If no allocator is passed to the library, the standard allocator is used – also in the state object

What is the execution policy?

• Handles the execution

 (like a ROCm/CUDA stream, sycl queue)

• Sequential / parallel

• Synchronous / asynchronous

Preserving explicit zeros?

9/24/24 SNL ws hororing Mike Heroux 21

Storing zeros explicitly can have advantages:

• Block-sparse matrix: sparse matrix with dense blocks (excluded for now?)

• Matrix entries change over the application time, zeros become nonzero

• Better performance through padding (cache line, coalesced access…)

• What if we convert from one format to another? Do we preserve the explicit zeros?

• Current discussion: yes, conversion preserves zeros, except for conversion from dense.

How about NaN propagation?

9/24/24 SNL ws hororing Mike Heroux 22

• Checking right-hand-side for NaN/Inf by default is too expensive

• This leads to inconsistency:

 a format storing an explicit zero will get a different result than a format storing an implicit zero

• Plan for different execution modes:

• Permissive (as fast as possible)

• Consistent (check for NaN/Inf)

• Reproducible (bitwise reproducibility)

One-stage? Two-stage? Three-stage? Any consensus?

9/24/24 SNL ws hororing Mike Heroux 23

One-stage? Two-stage? Three-stage? Any consensus?

9/24/24 SNL ws hororing Mike Heroux 24

One-stage? Two-stage? Three-stage? Any consensus?

9/24/24 SNL ws hororing Mike Heroux 25

One-stage? Two-stage? Three-stage? Any consensus?

9/24/24 SNL ws hororing Mike Heroux 26

Can be combined

How about out-of-place submatrices?

9/24/24 SNL ws hororing Mike Heroux 27

Extract submatrix of non-negative values

Extract first left-top 10x10 submatrix

Which precisions are relevant?

9/24/24 SNL ws hororing Mike Heroux 28

• Fp64, fp32, fp16, bf16 (+ complex variants)

• Mixed Precision (different inputs / outputs)

• Arithmetic precision is always the highest input/output precision (no performance loss)

• Large number of routine variants -> C++ overloading

Input Compute Output

C++ may be doable, but what about C and Fortran?

9/24/24 SNL ws hororing Mike Heroux 29

• Combinatorial complexity make a Fortran/C interface infeasible.

• Maybe an interface for the most relevant combinations?

• Vendors prefer using internally a C++ interface for their sparse routine interfaces.

Aren’t the vendors already doing it anyway?

9/24/24 SNL ws hororing Mike Heroux 30

• Yes… and they are all going in similar directions – it is only a question of moderating the process…

Anyway, what is a standard?

9/24/24 SNL ws hororing Mike Heroux 31

• A standard is a standard because a significant portion of the community follows the same convention;

• We discuss how we do things in the different NLA libraries, and what the customers want;

• We try to find an interface that combines the good ideas;

• Ideally, we have vertical compatibility: efforts can adopt the interface we design w/o significant changes;

• We hope for horizontal compatibility (Fortran, C) but acknowledge this will be limited;

Anyway, what is a standard?

9/24/24 SNL ws hororing Mike Heroux 32

Next step: present the
interface design at a BoF
at SC and request feedback
from the broader
community.

• A standard is a standard because a significant portion of the community follows the same convention;

• We discuss how we do things in the different NLA libraries, and what the customers want;

• We try to find an interface that combines the good ideas;

• Ideally, we have vertical compatibility: efforts can adopt the interface we design w/o significant changes;

• We hope for horizontal compatibility (Fortran, C) but acknowledge this will be limited;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32

