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Dense linear algebra

• All entries are stored explicitly

Sparse linear algebra

• Only nonzero values are stored explicitly
( and sometimes also zeros for performance reasons
  or because the matrix changes over time and a zero
  becomes nonzero )
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Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)

Sparse linear algebra

• Only nonzero values are stored explicitly 
• Different formats: COO, CSR, ELL, DIA…
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Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)
• Elements are stored in sorted order

Sparse linear algebra

• Only nonzero values are stored explicitly 
• Different formats: COO, CSR, ELL, DIA…
• Not always sorted

E.g. when elements are added in COO, 
or if diagonal elements are stored first, etc.



Why are we doing this? Do we need it? How is it different from dense BLAS?

9/24/24 SNL ws hororing Mike Heroux 6

Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)
• Elements are stored in sorted order
• Vectors and matrices are conceptually the same

Sparse linear algebra

• Only nonzero values are stored explicitly 
• Different formats: COO, CSR, ELL, DIA…
• Not always sorted
• Vectors use a different storage format
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Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)
• Elements are stored in sorted order
• Vectors and matrices are conceptually the same
• Size of output is known upfront -> single kernel 

Sparse linear algebra

• Only nonzero values are stored explicitly 
• Different formats: COO, CSR, ELL, DIA…
• Not always sorted
• Vectors use a different storage format
• Generally, the memory requirement is not known before

(e.g. sparse matrix multiply) 
 1) symbolic phase
            2) memory allocation
 3) numeric phase
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Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)
• Elements are stored in sorted order
• Vectors and matrices are conceptually the same
• Size of output is known upfront -> single kernel 
• Fortran/C interface adopted by most vendors

Sparse linear algebra

• Only nonzero values are stored explicitly 
• Different formats: COO, CSR, ELL, DIA…
• Not always sorted
• Vectors use a different storage format
• Generally, the memory requirement is not known before
• Vendors increasingly use a C++ interface, no agreement

Plethora of options makes a C-interface “impossible”
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Dense linear algebra

• All entries are stored explicitly
• One standard format (excpt. for row/col major)
• Elements are stored in sorted order
• Vectors and matrices are conceptually the same
• Size of output is known upfront -> single kernel 
• Fortran/C interface adopted by most vendors
• Exceptions are clearly handled

Sparse linear algebra

• Only nonzero values are stored explicitly 
• Different formats: COO, CSR, ELL, DIA…
• Not always sorted
• Vectors use a different storage format
• Generally, the memory requirement is not known before
• Vendors increasingly use a C++ interface, no agreement
• No consistent handling of NaN/Inf:

What if an implicit matrix zero is multiplied with a NaN?
Checking for NaN in the vector introduces overhead



The working group
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1st Sparse BLAS workshop, 2023

2nd Sparse BLAS workshop, 2024

Intel Corporation
NVIDIA
AMD
Arm
MathWorks
University of California, Berkeley
Intel Labs
ORNL, 
Karlsruhe Institute of Technology
LLNL
Sandia National Laboratories
MIT

Cross-Institutional working group, loose collaboration, not everyone attends every meeting, workshops, SC 2024 BoF;
(Vendor) library developers, Application specialists, standard enthusiasts;
Weekly virtual meetings, Sparse BLAS design proposal is working document;
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But there already is a sparse BLAS standard?
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• Not only one…
• Designed in a pre-GPU era
• Not adopted by GPU libraries
• AI needs other functionality
• New C++ standard features



Should libraries own  the sparse objects or a non-owning interface?
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• Owning allows for more optimization as the opaque object can use any storage format

• Owning makes it impossible for the user to easily access the data or modify the data

• Packing/Unpacking routines introduce overhead – maybe error prone?
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• Owning allows for more optimization as the opaque object can use any storage format

• Owning makes it impossible for the user to easily access the data or modify the data

• Packing/Unpacking routines introduce overhead – maybe error prone?

Most use cases want to apply operation to application-owned data.
  
   --> We decide to go for light-weight “views” of the data



Light-weight views with additional data?
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• Owning allows for more optimization as the opaque object can use any storage format

• Owning makes it impossible for the user to easily access the data or modify the data

• Packing/Unpacking routines introduce overhead – maybe error prone?

Most use cases want to apply operation to application-owned data.
  
   --> We decide to go for light-weight “views” of the data
    - Very limited optimization potential
    - Where can we store additional matrix information?
    - Create a copy?

               -->  We add a ”bag” to the “view” for additional data



Light-weight views with additional data?
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• Owning allows for more optimization as the opaque object can use any storage format

• Owning makes it impossible for the user to easily access the data or modify the data

• Packing/Unpacking routines introduce overhead – maybe error prone?

Most use cases want to apply operation to application-owned data.
  
   --> We decide to go for light-weight “views” of the data
    - Very limited optimization potential
    - Where can we store additional matrix information?
    - Create a copy?

               -->  We add a ”bag” to the “view” for additional data
      - matrixHandle

      - How should the space for additional data be allocated?



Library-internal data allocation
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• Some applications want to control all GPU memory with their allocator (Matlab, etc.)

• We need the possibility to pass this allocator to the library

• If no allocator is passed to the library, the standard allocator is used



Which data format?
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• We focus on the most universal and popular formats: CSR, CSC, COO

• We handle dense matrices/vectors as C++20 mdspan



Which operations?
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What if an operation needs temporary buffers?
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• An operation takes a state object that can contain temporary buffers

• Some applications want to control all GPU memory with their allocator (Matlab, etc.)

• We need the possibility to pass this allocator to the library

• If no allocator is passed to the library, the standard allocator is used – also in the state object

What is the execution policy? 

• Handles the execution 

  (like a ROCm/CUDA stream, sycl queue)

• Sequential / parallel 

• Synchronous / asynchronous 



Preserving explicit zeros?
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Storing zeros explicitly can have advantages:

• Block-sparse matrix: sparse matrix with dense blocks (excluded for now?)

• Matrix entries change over the application time, zeros become nonzero

• Better performance through padding (cache line, coalesced access…)

• What if we convert from one format to another? Do we preserve the explicit zeros?

• Current discussion: yes, conversion preserves zeros, except for conversion from dense.



How about NaN propagation?
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• Checking right-hand-side for NaN/Inf by default is too expensive 

• This leads to inconsistency: 

 a format storing an explicit zero will get a different result than a format storing an implicit zero

• Plan for different execution modes:

• Permissive ( as fast as possible )

• Consistent ( check for NaN/Inf )

• Reproducible ( bitwise reproducibility )



One-stage? Two-stage? Three-stage? Any consensus?
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One-stage? Two-stage? Three-stage? Any consensus?
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Can be combined



How about out-of-place submatrices?
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Extract submatrix of non-negative values

Extract first left-top 10x10 submatrix



Which precisions are relevant?
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• Fp64, fp32, fp16, bf16  (+ complex variants)

• Mixed Precision (different inputs / outputs)

• Arithmetic precision is always the highest input/output precision (no performance loss)

• Large number of routine variants -> C++ overloading

Input Compute Output



C++ may be doable, but what about C and Fortran?
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• Combinatorial complexity make a Fortran/C interface infeasible.

• Maybe an interface for the most relevant combinations?

• Vendors prefer using internally a C++ interface for  their sparse routine interfaces. 



Aren’t the vendors already doing it anyway?
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• Yes… and they are all going in similar directions – it is only a question of moderating the process…



Anyway, what is a standard?
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• A standard is a standard because a significant portion of the community follows the same convention;

• We discuss how we do things in the different NLA libraries, and what the customers want;

• We try to find an interface that combines the good ideas;

• Ideally, we have vertical compatibility: efforts can adopt the interface we design w/o significant changes;

• We hope for horizontal compatibility (Fortran, C) but acknowledge this will be limited;
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Next step: present the 
interface design at a BoF 
at SC and request feedback 
from the broader 
community.

• A standard is a standard because a significant portion of the community follows the same convention;

• We discuss how we do things in the different NLA libraries, and what the customers want;

• We try to find an interface that combines the good ideas;

• Ideally, we have vertical compatibility: efforts can adopt the interface we design w/o significant changes;

• We hope for horizontal compatibility (Fortran, C) but acknowledge this will be limited;
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